A Combined Semi-Supervised Deep Learning Method for Oil Leak Detection in Pipelines Using IIoT at the Edge

被引:24
|
作者
Spandonidis, Christos [1 ]
Theodoropoulos, Panayiotis [1 ]
Giannopoulos, Fotis [1 ]
机构
[1] Prisma Elect SA, Leof Poseidonos 42, Kallithea 17675, Greece
关键词
leakage detection; oil pipeline; deep learning; CNN classifier; LSTM autoencoders; edge computing; SVM;
D O I
10.3390/s22114105
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Pipelines are integral components for storing and transporting liquid and gaseous petroleum products. Despite being durable structures, ruptures can still occur, resulting not only in financial losses and energy waste but, most importantly, in immeasurable environmental disasters and possibly in human casualties. The objective of the ESTHISIS project is the development of a low-cost and efficient wireless sensor system for the instantaneous detection of leaks in metallic pipeline networks transporting liquid and gaseous petroleum products in a noisy industrial environment. The implemented methodology is based on processing the spectrum of vibration signals appearing in the pipeline walls due to a leakage effect and aims to minimize interference in the piping system. It is intended to use low frequencies to detect and characterize leakage to increase the range of sensors and thus reduce cost. In the current work, the smart sensor system developed for signal acquisition and data analysis is briefly described. For this matter, two leakage detection methodologies are implemented. A 2D-Convolutional Neural Network (CNN) model undertakes supervised classification in spectrograms extracted by the signals acquired by the accelerometers mounted on the pipeline wall. This approach allows us to supplant large-signal datasets with a more memory-efficient alternative to storing static images. Second, Long Short-Term Memory Autoencoders (LSTM AE) are employed, receiving signals from the accelerometers, and providing an unsupervised leakage detection solution.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Semi-Supervised Multimodal Deep Learning Model for Polarity Detection in Arguments
    Ange, Tato
    Roger, Nkambou
    Aude, Dufresne
    Claude, Frasson
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [32] Semi-Supervised Spatiotemporal Deep Learning for Intrusions Detection in IoT Networks
    Abdel-Basset, Mohamed
    Hawash, Hossam
    Chakrabortty, Ripon K.
    Ryan, Michael J.
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (15) : 12251 - 12265
  • [33] AN OPERATOR METHOD FOR SEMI-SUPERVISED LEARNING
    Lu, Wei-Jun
    Bai, Yan
    Tang, Yi
    Tao, Yan-Fang
    PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, 2009, : 123 - +
  • [34] Semi-supervised Learning with Deep Generative Models
    Kingma, Diederik P.
    Rezende, Danilo J.
    Mohamed, Shakir
    Welling, Max
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [35] Semi-supervised Clustering with Deep Metric Learning
    Li, Xiaocui
    Yin, Hongzhi
    Zhou, Ke
    Chen, Hongxu
    Sadiq, Shazia
    Zhou, Xiaofang
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, 2019, 11448 : 383 - 386
  • [36] An empirical evaluation of deep semi-supervised learning
    Fredriksson, Teodor
    Bosch, Jan
    Olsson, Helena H.
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2025,
  • [37] Semi-Supervised Deep Learning for Multiplex Networks
    Mitra, Anasua
    Vijayan, Priyesh
    Sanasam, Ranbir
    Goswami, Diganta
    Parthasarathy, Srinivasan
    Ravindran, Balaraman
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 1234 - 1244
  • [38] Label Propagation for Deep Semi-supervised Learning
    Iscen, Ahmet
    Tolias, Giorgos
    Avrithis, Yannis
    Chum, Ondrej
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 5065 - 5074
  • [39] Deep learning via semi-supervised embedding
    Weston, Jason
    Ratle, Frédéric
    Mobahi, Hossein
    Collobert, Ronan
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2012, 7700 LECTURE NO : 639 - 655
  • [40] Deep Bayesian Active Semi-Supervised Learning
    Rottmann, Matthias
    Kahl, Karsten
    Gottschalk, Hanno
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 158 - 164