Graphene Foam Decorated With ZnO as a Humidity Sensor

被引:32
作者
Morsy, Mohamed [1 ]
Ibrahim, Medhat [2 ]
Yuan, Zhenyu [3 ]
Meng, Fanli [3 ]
机构
[1] Housing & Bldg Natl Res Ctr HBRC, Bldg Phys & Environm Inst, Giza 12311, Egypt
[2] Natl Res Ctr, Dept Spect, Giza 12622, Egypt
[3] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Peoples R China
关键词
Graphene; Sensors; Zinc oxide; Humidity; II-VI semiconductor materials; Noise measurement; Scanning electron microscopy; Graphene foam; CVD; ZnO; thermal analysis; humidity sensors; OXIDE; COMPOSITE; FILM; SUPERCAPACITOR; PERFORMANCE; FABRICATION; SNO2;
D O I
10.1109/JSEN.2019.2948983
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The effect of ZnO nanorods on the humidity-sensing performance of graphene foam (GF) has been studied. The GF is synthesized by atmospheric pressure chemical vapor deposition (APCVD) using xylene as the hydrocarbon source. Hydrothermal rout is utilized for getting ZnO nanorods loaded on the surface of GF. The obtained materials are characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, Furrier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), BET surface area and BJH pore diameter distribution. The results of this study showed that ZnO nanorods are densely and homogeneously loaded over GF Skelton. The peak values of surface areas are estimated to be 2011.1 cm2/g, and 452.3 cm2/g for GF and GF/ZnO respectively. The humidity sensing performance of ZnO/GF composite shows a linear relationship with the RH value from 20& x0025; to 95& x0025;.
引用
收藏
页码:1721 / 1729
页数:9
相关论文
共 52 条
[1]   Humidity sensor based on reduced graphene oxide/lignosulfonate composite thin-film [J].
Chen, Changzhou ;
Wang, Xiluan ;
Li, Mingfei ;
Fan, Yongming ;
Sun, Runcang .
SENSORS AND ACTUATORS B-CHEMICAL, 2018, 255 :1569-1576
[2]   Three-dimensional graphene foams promote osteogenic differentiation of human mesenchymal stem cells [J].
Crowder, Spencer W. ;
Prasai, Dhiraj ;
Rath, Rutwik ;
Balikov, Daniel A. ;
Bae, Hojae ;
Bolotin, Kirill I. ;
Sung, Hak-Joon .
NANOSCALE, 2013, 5 (10) :4171-4176
[3]   Chemiresistive humidity sensor based on chitosan/zinc oxide/single-walled carbon nanotube composite film [J].
Dai, Haipo ;
Feng, Nana ;
Li, Jiwei ;
Zhang, Jie ;
Li, Wei .
SENSORS AND ACTUATORS B-CHEMICAL, 2019, 283 :786-792
[4]   Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications [J].
Dong, Xiaochen ;
Cao, Yunfa ;
Wang, Jing ;
Chan-Park, Mary B. ;
Wang, Lianhui ;
Huang, Wei ;
Chen, Peng .
RSC ADVANCES, 2012, 2 (10) :4364-4369
[5]   Interaction of Small Molecules with Diatomic ZnO: Density Functional Theory Investigation [J].
El-Okr, Mohamed ;
Attalla, Mohamed ;
Ibrahim, Medhat .
SENSOR LETTERS, 2011, 9 (05) :1750-1754
[6]  
Elhaes H., 2018, SENSOR LETT, V16, P539, DOI [10.1166/sl.2018.3974, DOI 10.1166/SL.2018.3974]
[7]  
Elhaes H., 2017, SENSOR LETT, V15, P604, DOI [10.1166/sl.2017.3853, DOI 10.1166/SL.2017.3853]
[8]  
Elhaes H., 2018, Sens. Lett., V16, P513, DOI 10.1166/sl.2018.3971
[9]   SnO2 as a Gas Sensor: Modeling and Spectroscopic Approach [J].
Elhaes, Hanan ;
Ibrahim, Medhat ;
Sleim, Mahmoud ;
Liu, Jinhuai ;
Huang, Jiarui .
SENSOR LETTERS, 2009, 7 (04) :530-534
[10]   Computational spectroscopic study of copper, cadmium, lead and zinc interactions in the environment [J].
Ibrahim, M ;
El-Haes, H .
INTERNATIONAL JOURNAL OF ENVIRONMENT AND POLLUTION, 2005, 23 (04) :417-424