A New Differential Evolution Algorithm with Random Parameters

被引:0
作者
Huang, Shao-Rong [1 ]
机构
[1] Guangdong Justice Police Vocat Coll, Dept Informat Management, Guangzhou 510520, Guangdong, Peoples R China
来源
MECHATRONICS ENGINEERING, COMPUTING AND INFORMATION TECHNOLOGY | 2014年 / 556-562卷
关键词
Differential evolution algorithm (DE); Numerical optimization; Parameter analysis; algorithm improvement;
D O I
10.4028/www.scientific.net/AMM.556-562.3614
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Differential evolution algorithm's performance often depends heavily on the parameter settings. Based on analyzing the influence of the parameters setting in the experiment, the effects and the optimal selection of those major parameters on DE are analyzed, and some conclusions are derived. A new differential evolution algorithm which the scale constant (F) and crossover constant (CR) are generated as random numbers within a certain range in each iteration process is proposed. The experimental results shows that the new algorithm is simple, easy to realize and can get higher precision and better stability.
引用
收藏
页码:3614 / 3621
页数:8
相关论文
共 8 条
[1]  
Gao Y., 2009, J NATURAL SCI HEILON, V24, P81
[2]   Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces [J].
Storn, R ;
Price, K .
JOURNAL OF GLOBAL OPTIMIZATION, 1997, 11 (04) :341-359
[3]  
Storn R., 1995, DIFFERENTIAL EVOLUTI
[4]  
Xie Xiao-feng, 2004, Control and Decision, V19, P49
[5]  
Yang Zhenyu, 2011, CAAI Transactions on Intelligent Systems, V6, P415, DOI 10.3969/j.issn.1673-4785.2011.05.005
[6]  
Yuan Jun-gang, 2007, Journal of System Simulation, V19, P4646
[7]  
Zhan Z. H., 2011, P GEN EV COMP C JUL, P211
[8]  
Zhan Z.-H., 2010, P C GEN EV COMP, P39