Graded Limits of Minimal Affinizations over the Quantum Loop Algebra of Type G2

被引:7
作者
Li, Jian-Rong [1 ,2 ]
Naoi, Katsuyuki [3 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
[2] Hebrew Univ Jerusalem, Einstein Inst Math, IL-9190401 Jerusalem, Israel
[3] Tokyo Univ Agr & Technol, Inst Engn, 3-8-1 Harumi Cho, Fuchu, Tokyo, Japan
基金
欧洲研究理事会; 中国国家自然科学基金;
关键词
Minimal affinizations; Quantum loop algebras; Current algebras; KIRILLOV-RESHETIKHIN MODULES; DEMAZURE MODULES; WEYL MODULES; REPRESENTATIONS; CRYSTALS;
D O I
10.1007/s10468-016-9606-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to study the graded limits of minimal affinizations over the quantum loop algebra of type G (2). We show that the graded limits are isomorphic to multiple generalizations of Demazure modules, and obtain defining relations of them. As an application, we obtain a polyhedral multiplicity formula for the decomposition of minimal affinizations of type G (2) as a -module, by showing the corresponding formula for the graded limits. As another application, we prove a character formula of the least affinizations of generic parabolic Verma modules of type G (2) conjectured by Mukhin and Young.
引用
收藏
页码:957 / 973
页数:17
相关论文
共 25 条
[1]  
Chari V, 2002, INT MATH RES NOTICES, V2002, P357
[2]  
Chari V, 2001, INT MATH RES NOTICES, V2001, P629
[3]   MINIMAL AFFINIZATIONS OF REPRESENTATIONS OF QUANTUM GROUPS - THE NONSIMPLY-LACED CASE [J].
CHARI, V ;
PRESSLEY, A .
LETTERS IN MATHEMATICAL PHYSICS, 1995, 35 (02) :99-114
[4]   Minimal affinizations of representations of quantum groups: The rank 2 case [J].
Chari, V .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1995, 31 (05) :873-911
[5]  
Chari V., 1994, CMS C P, V16, P1995
[6]  
Chari V., 1994, A guide to quantum groups
[7]  
Chari V, 2007, CONTEMP MATH, V442, P41
[8]   The restricted Kirillov-Reshetikhin modules for the current and twisted current algebras [J].
Chari, Vyjayanthi ;
Moura, Adriano .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 266 (02) :431-454
[9]  
DRINFELD VG, 1987, DOKL AKAD NAUK SSSR+, V296, P13
[10]   Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions [J].
Fourier, G. ;
Littelmann, P. .
ADVANCES IN MATHEMATICS, 2007, 211 (02) :566-593