Breeding strategy for resistance to Striga asiatica (L.) Kuntze based on genetic diversity and population structure of tropical maize (Zea mays L.) lines

被引:7
|
作者
Gasura, Edmore [1 ]
Nyandoro, Brian [1 ]
Mabasa, Stanford [1 ]
Setimela, Peter S. [2 ]
Kyalo, Martina [3 ]
Yao, Nasser [3 ]
机构
[1] Univ Zimbabwe, Dept Plant Prod Sci & Technol, POB MP167, Harare, Zimbabwe
[2] Int Maize & Wheat Improvement Ctr, Maize Program, POB MP163, Harare, Zimbabwe
[3] Int Livestock Res Inst, Biosci East & Cent Africa, POB 30709, Nairobi 00100, Kenya
基金
比尔及梅琳达.盖茨基金会;
关键词
Genetic diversity; Heterotic groups; Population structure; Striga asiatica (L; ) Kuntze; Striga spp; resistance breeding strategy; SELECTION;
D O I
10.1007/s10722-021-01274-6
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Maize (Zea mays L.) is a major staple crop in southern Africa and is produced on millions of hectares. However, its yield is greatly reduced by Striga spp. a witchweed which is causing US$ 7 billion losses annually. Use of host resistance could be an effective way of controlling Striga spp. and resistance to Striga spp. is quantitative, mainly controlled by additive gene action. Understanding the population structure and genetic diversity is therefore key in designing an effective breeding program targeting grain yield heterosis and resistance to Striga spp. The aim of this study was to determine the genetic diversity and population structure of the key germplasm from tropical Africa. This information could guide in the identification of heterotic groups and potential testers required to kick start a maize breeding program for Striga asiatica (L.) Kuntze in southern Africa. A total of 222 maize inbred lines from IITA and CIMMYT were used in this study. The materials were genotyped using the genotyping-by-sequencing method. A total of 45, 000 SNP markers were revealed, and these were subjected to analysis of molecular variance, structure analysis and clustering using the Gower's distance and neighbor joining algorithm. Molecular variance was lager within individuals (91%) than among populations (9%). The inbred lines clustered into three major groups, with the IITA germplasm clustering separately from CIMMYT germplasm. A breeding strategy for S. asiatica resistance was proposed with the aim of increasing genetic gains in both the resistance and grain yield.
引用
收藏
页码:987 / 996
页数:10
相关论文
共 50 条
  • [1] Breeding strategy for resistance to Striga asiatica (L.) Kuntze based on genetic diversity and population structure of tropical maize (Zea mays L.) lines
    Edmore Gasura
    Brian Nyandoro
    Stanford Mabasa
    Peter S. Setimela
    Martina Kyalo
    Nasser Yao
    Genetic Resources and Crop Evolution, 2022, 69 : 987 - 996
  • [2] Resistance breeding and biocontrol of Striga asiatica (L.) Kuntze in maize: a review
    Shayanowako, Admire Tichafa
    Laing, Mark
    Shimelis, Hussein
    Mwadzingeni, Learnmore
    ACTA AGRICULTURAE SCANDINAVICA SECTION B-SOIL AND PLANT SCIENCE, 2018, 68 (02) : 110 - 120
  • [3] Genetic diversity among maize (Zea mays, L.) inbred lines in Eastern Croatia
    Jambrovic, Antun
    Simic, Domagoj
    Ledencan, Tatjana
    Zdunic, Zvonimir
    Brkic, Ivan
    PERIODICUM BIOLOGORUM, 2008, 110 (03) : 251 - 255
  • [4] Unraveling the genetic architecture of subtropical maize (Zea mays L.) lines to assess their utility in breeding programs
    Thirunavukkarasu, Nepolean
    Hossain, Firoz
    Shiriga, Kaliyugam
    Mittal, Swati
    Arora, Kanika
    Rathore, Abhishek
    Mohan, Sweta
    Shah, Trushar
    Sharma, Rinku
    Namratha, Pottekatt Mohanlal
    Mithra, Amitha S. V.
    Mohapatra, Trilochan
    Gupta, Hari Shankar
    BMC GENOMICS, 2013, 14
  • [5] INHERITANCE AND BREEDING STRATEGIES FOR PHOSPHORUS EFFICIENCY IN TROPICAL MAIZE (Zea Mays L.)
    Parentoni, S. N.
    de Souza, C. L., Jr.
    de Carvalho Alves, V. M.
    Gama, E. E. G.
    Coelho, A. M.
    de Oliveira, A. C.
    Guimaraes, P. E. O.
    Guimaraes, C. T.
    Vasconcelos, M. J. V.
    Patto Pacheco, C. A.
    Meirelles, W. F.
    de Magalhaes, J. V.
    Moreira Guimaraes, L. J.
    da Silva, A. R.
    Ferreira Mendes, F.
    Schaffert, R. E.
    MAYDICA, 2010, 55 (01): : 1 - 15
  • [6] Maize diversity in southern Brazil: indication of a microcenter of Zea mays L.
    Costa, Flaviane Malaquias
    de Almeida Silva, Natalia Carolina
    Ogliari, Juliana Bernardi
    GENETIC RESOURCES AND CROP EVOLUTION, 2017, 64 (04) : 681 - 700
  • [7] Genetic Diversity and Population Structure of Maize (Zea mays L.) Inbred Lines in Association with Phenotypic and Grain Qualitative Traits Using SSR Genotyping
    Patel, Rumit
    Memon, Juned
    Kumar, Sushil
    Patel, Dipak A.
    Sakure, Amar A.
    Patel, Manish B.
    Das, Arna
    Karjagi, Chikkappa G.
    Patel, Swati
    Patel, Ujjaval
    Roychowdhury, Rajib
    PLANTS-BASEL, 2024, 13 (06):
  • [8] Genetic diversity of starch synthesis genes of Chinese maize (Zea mays L.) with SNAPs
    Cao, W. -B.
    Zheng, L. -L.
    Zhang, Z. -F.
    Li, X. -B.
    MOLECULAR BIOLOGY, 2009, 43 (06) : 937 - 945
  • [9] Genetic analysis of tropical quality protein maize (Zea mays L.) germplasm
    Susan G. Njeri
    Dan Makumbi
    Marilyn L. Warburton
    Alpha Diallo
    MacDonald B. Jumbo
    George Chemining’wa
    Euphytica, 2017, 213
  • [10] Genetic analysis of tropical quality protein maize (Zea mays L.) germplasm
    Njeri, Susan G.
    Makumbi, Dan
    Warburton, Marilyn L.
    Diallo, Alpha
    Jumbo, MacDonald B.
    Chemining'wa, George
    EUPHYTICA, 2017, 213 (11)