A class of fuzzy clusterwise regression models

被引:30
|
作者
D'Urso, Pierpaolo [1 ]
Massari, Riccardo [1 ]
Santoro, Adriana [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Anal Econ & Sociali, Rome, Italy
[2] Univ Molise, Dipartimento Sci Econ Gestionali & Sociali, Campobasso, Italy
关键词
Fuzzy clusterwise linear regression analysis; Fuzzy clusterwise polynomial regression analysis; LR fuzzy dependent variable; Goodness of fit; Cluster validity; LEAST-SQUARES ESTIMATION; LINEAR-REGRESSION; SWITCHING REGRESSIONS; OUTPUT DATA; OUTLIERS; ALGORITHM; IDENTIFICATION; METHODOLOGY; MIXTURES; NETWORKS;
D O I
10.1016/j.ins.2010.08.018
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we introduce a class of fuzzy clusterwise regression models with LR fuzzy response variable and numeric explanatory variables, which embodies fuzzy clustering, into a fuzzy regression framework. The model bypasses the heterogeneity problem that could arise in fuzzy regression by subdividing the dataset into homogeneous clusters and performing separate fuzzy regression on each cluster. The integration of the clustering model into the regression framework allows us to simultaneously estimate the regression parameters and the membership degree of each observation to each cluster by optimizing a single objective function. The class of models proposed here includes, as special cases, the fuzzy clusterwise linear regression model and the fuzzy clusterwise polynomial regression model. We also introduce a set of goodness of fit indices to evaluate the fit of the regression model within each cluster as well as in the whole dataset. Finally, we consider some cluster validity criteria that are useful in identifying the "optimal" number of clusters. Several applications are provided in order to illustrate the approach. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:4737 / 4762
页数:26
相关论文
共 50 条
  • [41] A weighted least-squares approach to clusterwise regression
    Rainer Schlittgen
    AStA Advances in Statistical Analysis, 2011, 95 : 205 - 217
  • [42] Clusterwise linear regression modeling with soft scale constraints
    Di Mari, Roberto
    Rocci, Roberto
    Gattone, Stefano Antonio
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2017, 91 : 160 - 178
  • [43] Fuzzy Clusterwise Generalized Structured Component Analysis
    Heungsun Hwang
    Wayne S. Desarbo
    Yoshio Takane
    Psychometrika, 2007, 72 : 181 - 198
  • [44] Evaluation of fuzzy regression models by fuzzy neural network
    Mosleh, M.
    Otadi, M.
    Abbasbandy, S.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (03) : 825 - 834
  • [45] Fuzzy clusterwise generalized structured component analysis
    Hwang, Heungsun
    DeSarbo, Wayne S.
    Takane, Yoshio
    PSYCHOMETRIKA, 2007, 72 (02) : 181 - 198
  • [46] Seemingly unrelated clusterwise linear regression for contaminated data
    Gabriele Perrone
    Gabriele Soffritti
    Statistical Papers, 2023, 64 : 883 - 921
  • [47] An algorithm for clusterwise linear regression based on smoothing techniques
    Bagirov, Adil M.
    Ugon, Julien
    Mirzayeva, Hijran G.
    OPTIMIZATION LETTERS, 2015, 9 (02) : 375 - 390
  • [48] On fuzzy clustering based regression models
    Sato-Ilic, M
    NAFIPS 2004: ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY, VOLS 1AND 2: FUZZY SETS IN THE HEART OF THE CANADIAN ROCKIES, 2004, : 216 - 221
  • [49] Fuzzy linear regression forecasting models
    Wu, Chong
    Hui, Xiao-Feng
    Zhu, Hong-Wen
    Journal of Harbin Institute of Technology (New Series), 2002, 9 (03) : 280 - 281
  • [50] Fuzzy linear regression forecasting models
    吴冲
    惠晓峰
    朱洪文
    Journal of Harbin Institute of Technology, 2002, (03) : 280 - 281