Transitivity of euclidean extensions of anosov diffeomorphisms

被引:14
作者
Nitica, V [1 ]
Pollicottt, M
机构
[1] W Chester Univ Penn, Dept Math, W Chester, PA 19383 USA
[2] Romanian Acad, Inst Math, RO-70700 Bucharest, Romania
[3] Univ Manchester, Dept Math, Manchester M13 9PL, Lancs, England
关键词
D O I
10.1017/S0143385704000471
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the class of R-n extensions of Anosov diffeomorphisms on infranilmanifolds, and find necessary and sufficient conditions for topological transitivity. In particular, if the fiber is R, the existence of a semi-orbit with the projection on R unbounded from above and from below is equivalent to topological transitivity. We also show that in the above class topological transitivity and stable topological transitivity are equivalent.
引用
收藏
页码:257 / 269
页数:13
相关论文
共 21 条
[1]   RECURRENCE OF CO-CYCLES AND RANDOM-WALKS [J].
ATKINSON, G .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1976, 13 (AUG) :486-488
[2]   Persistent nonhyperbolic transitive diffeomorphisms [J].
Bonatti, C ;
Diaz, LJ .
ANNALS OF MATHEMATICS, 1996, 143 (02) :357-396
[3]   The Walters condition [J].
Bousch, T .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2001, 34 (02) :287-311
[4]  
BOWEN R, 1978, REG C SER MATH, V35
[5]  
Brin M.I., 1975, FUNC ANAL APPL, V9, P9
[6]   Stable ergodicity of skew products [J].
Burns, K ;
Wilkinson, A .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1999, 32 (06) :859-889
[7]   Stable topological transitivity of skew and principal extensions [J].
Field, A ;
Nitica, V .
NONLINEARITY, 2001, 14 (05) :1055-1069
[8]   Stable ergodicity of skew extensions by compact Lie groups [J].
Field, M ;
Parry, W .
TOPOLOGY, 1999, 38 (01) :167-187
[9]   ERGODIC PROPERTIES, WITH INFINITE MEASURE, OF CERTAIN FIBERED DYNAMIC-SYSTEMS [J].
GUIVARCH, Y .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1989, 9 :433-453
[10]  
HIRSCH M. W., 1976, GRADUATE TEXTS MATH, V33