Subspace identification of MIMO LPV systems using a periodic scheduling sequence

被引:125
作者
Felici, Federico [1 ]
van Wingerden, Jan-Willem [1 ]
Verhaegen, Michel [1 ]
机构
[1] Delft Univ Technol, Delft Ctr Syst & Control, NL-2628 CD Delft, Netherlands
关键词
identification; subspace methods; periodic systems; LPV systems; time-varying systems; instrumental variable methods;
D O I
10.1016/j.automatica.2007.02.027
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A novel subspace identification method is presented which is able to reconstruct the deterministic part of a multivariable state-space LPV system with affine parameter dependence, in the presence of process and output noise. It is assumed that the identification data is generated with the scheduling variable varying periodically during the course of the identification experiment. This allows to use methods from LTI subspace identification to determine the column space of the time-varying observability matrices. It is shown that the crucial step in determining the original LPV system is to ensure the obtained observability matrices are defined with respect to the same state basis. Once the LPV model has been identified, it is valid for other nonperiodic scheduling sequences as well. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1684 / 1697
页数:14
相关论文
共 50 条
[41]   Identification of LPV Systems in the Presence of Outliers and Time-Varying Delays [J].
Liu, Xin .
IEEE ACCESS, 2020, 8 :208496-208505
[42]   Subspace Identification of Large-Scale Interconnected Systems [J].
Haber, Aleksandar ;
Verhaegen, Michel .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (10) :2754-2759
[43]   Confidence set-membership state estimation for LPV systems with inexact scheduling variables [J].
Pan, Zhichao ;
Luan, Xiaoli ;
Liu, Fei .
ISA TRANSACTIONS, 2022, 122 :38-48
[44]   Subspace identification using instrumental variable techniques [J].
Gustafsson, T .
AUTOMATICA, 2001, 37 (12) :2005-2010
[45]   Gain-scheduled output-feedback controllers using inexact scheduling parameters for continuous-time LPV systems [J].
Sato, Masayuki ;
Peaucelle, Dimitri .
AUTOMATICA, 2013, 49 (04) :1019-1025
[46]   Extraction of modal parameters for identification of time-varying systems using data-driven stochastic subspace identification [J].
Li, Wenchao ;
Viet-Hung Vu ;
Liu, Zhaoheng ;
Thomas, Marc ;
Hazel, Bruce .
JOURNAL OF VIBRATION AND CONTROL, 2018, 24 (20) :4781-4796
[47]   Disturbance identification and its application for MIMO systems [J].
Chen, XK ;
Tsuruoka, S ;
Fukuda, T ;
Hori, T .
(SYSID'97): SYSTEM IDENTIFICATION, VOLS 1-3, 1998, :1305-1310
[48]   Identification of continuous industrial processes using subspace system identification methods [J].
Treasure, RJ ;
Cooper, JE .
CONDITION MONITORING AND DIAGNOSTIC ENGINEERING MANAGEMENT, 2001, :615-623
[49]   Subspace identification of multivariable linear parameter-varying systems [J].
Verdult, V ;
Verhaegen, M .
AUTOMATICA, 2002, 38 (05) :805-814
[50]   An Efficient Subspace Method for the Blind Identification of Multichannel FIR Systems [J].
Diamantaras, Konstantinos I. ;
Papadimitriou, Theophilos .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (12) :5833-5839