Subspace identification of MIMO LPV systems using a periodic scheduling sequence

被引:125
|
作者
Felici, Federico [1 ]
van Wingerden, Jan-Willem [1 ]
Verhaegen, Michel [1 ]
机构
[1] Delft Univ Technol, Delft Ctr Syst & Control, NL-2628 CD Delft, Netherlands
关键词
identification; subspace methods; periodic systems; LPV systems; time-varying systems; instrumental variable methods;
D O I
10.1016/j.automatica.2007.02.027
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A novel subspace identification method is presented which is able to reconstruct the deterministic part of a multivariable state-space LPV system with affine parameter dependence, in the presence of process and output noise. It is assumed that the identification data is generated with the scheduling variable varying periodically during the course of the identification experiment. This allows to use methods from LTI subspace identification to determine the column space of the time-varying observability matrices. It is shown that the crucial step in determining the original LPV system is to ensure the obtained observability matrices are defined with respect to the same state basis. Once the LPV model has been identified, it is valid for other nonperiodic scheduling sequences as well. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1684 / 1697
页数:14
相关论文
共 50 条
  • [1] Subspace identification of Bilinear and LPV systems for open- and closed-loop data
    van Wingerden, Jan-Willem
    Verhaegen, Michel
    AUTOMATICA, 2009, 45 (02) : 372 - 381
  • [2] Tensor networks for MIMO LPV system identification
    Gunes, Bilal
    van Wingerden, Jan-Willem
    Verhaegen, Michel
    INTERNATIONAL JOURNAL OF CONTROL, 2020, 93 (04) : 797 - 811
  • [3] Subspace Identification of Linear Time-Periodic Systems With Periodic Inputs
    Yin, Mingzhou
    Iannelli, Andrea
    Smith, Roy S.
    IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (01): : 145 - 150
  • [4] Identification methods for LPV MIMO systems
    Nakajima, A
    Tsumura, K
    SICE 2002: PROCEEDINGS OF THE 41ST SICE ANNUAL CONFERENCE, VOLS 1-5, 2002, : 1241 - 1245
  • [5] Subspace identification of multivariable LPV systems: a novel approach
    van Wingerden, Jan-Willem
    Verhaegen, Michel
    2008 IEEE INTERNATIONAL SYMPOSIUM ON COMPUTER-AIDED CONTROL SYSTEM DESIGN, 2008, : 27 - 32
  • [6] Tensor Nuclear Norm LPV Subspace Identification
    Gunes, Bilal
    van Wingerden, Jan-Willem
    Verhaegen, Michel
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (11) : 3897 - 3903
  • [7] Kernel methods for subspace identification of multivariable LPV and bilinear systems
    Verdult, V
    Verhaegen, M
    AUTOMATICA, 2005, 41 (09) : 1557 - 1565
  • [8] Predictor-Based Tensor Regression (PBTR) for LPV subspace identification
    Gunes, Bilal
    van Wingerden, Jan-Willem
    Verhaegen, Michel
    AUTOMATICA, 2017, 79 : 235 - 243
  • [9] Identifying MIMO Wiener systems using subspace model identification methods
    Westwick, D
    Verhaegen, M
    SIGNAL PROCESSING, 1996, 52 (02) : 235 - 258
  • [10] A Subspace Approach to the Identification of MIMO Piecewise Linear Systems
    Liang, Li
    Wei, Done
    Ji Yindong
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 2465 - 2470