Spatiotemporal neural network for estimating surface NO2 concentrations over north China and their human health impact

被引:32
作者
Zhang, Chengxin [1 ]
Liu, Cheng [1 ,2 ,3 ,4 ]
Li, Bo [5 ]
Zhao, Fei [1 ]
Zhao, Chunhui [3 ]
机构
[1] Univ Sci & Technol China, Dept Precis Machinery & Precis Instrumentat, Hefei 230026, Peoples R China
[2] Chinese Acad Sci, Ctr Excellence Reg Atmospher Environm, Inst Urban Environm, Xiamen 361021, Peoples R China
[3] Chinese Acad Sci, Anhui Inst Opt & Fine Mech, Key Lab Environm Opt & Technol, Hefei 230031, Peoples R China
[4] Univ Sci & Technol China, Key Lab Precis Sci Instrumentat, Anhui Higher Educ Inst, Hefei 230026, Peoples R China
[5] Univ Sci & Technol China, Sch Earth & Space Sci, Hefei 230026, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Exposure assessment; Surface nitrogen dioxide; Deep learning; Health impact; Satellite remote sensing; Air quality prediction; SATELLITE DATA; PM2.5; CONCENTRATIONS; TROPOSPHERIC NO2; NITROGEN-DIOXIDE; IN-SITU; RESOLUTION; RETRIEVAL; POLLUTANTS; MODEL; OMI;
D O I
10.1016/j.envpol.2022.119510
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Atmospheric nitrogen dioxide (NO2) is an important reactive gas pollutant harmful to human health. The spatiotemporal coverage provided by traditional NO2 monitoring methods is insufficient, especially in the suburban and rural areas of north China, which have a high population density and experience severe air pollution. In this study, we implemented a spatiotemporal neural network (STNN) model to estimate surface NO2 from multiple sources of information, which included satellite and in situ measurements as well as meteorological and geographical data. The STNN predicted NO2 with high accuracy, with a coefficient of determination (R2) of 0.89 and a root mean squared error of 5.8 mu g/m3 for sample-based 10-fold cross-validation. Based on the surface NO2 concentration determined by the STNN, we analyzed the spatial distribution and temporal trends of NO2 pollution in north China. We found substantial drops in surface NO2 concentrations ranging between 9.1% and 33.2% for large cities during the 2020 COVID-19 lockdown when compared to those in 2019. Moreover, we estimated the all-cause deaths attributed to NO2 exposure at a high spatial resolution of about 1 km, with totals of 6082, 4200, and 18,210 for Beijing, Tianjin, and Hebei Provinces in 2020, respectively. We observed remarkable regional differences in the health impacts due to NO2 among urban, suburban, and rural areas. Generally, the STNN model could incorporate spatiotemporal neighboring information and infer surface NO2 concentration with full coverage and high accuracy. Compared with machine learning regression techniques, STNN can effectively avoid model overfitting and simultaneously consider both spatial and temporal correlations of input variables using deep convolutional networks with residual blocks. The use of the proposed STNN model, as well as the surface NO2 dataset, can benefit air quality monitoring, forecasting, and health burden assessments.
引用
收藏
页数:8
相关论文
共 56 条
[1]   Global, national, and urban burdens of paediatric asthma incidence attributable to ambient NO2 pollution: estimates from global datasets [J].
Achakulwisut, Pattanun ;
Brauer, Michael ;
Hystad, Perry ;
Anenberg, Susan C. .
LANCET PLANETARY HEALTH, 2019, 3 (04) :E166-E178
[2]   Permutation importance: a corrected feature importance measure [J].
Altmann, Andre ;
Tolosi, Laura ;
Sander, Oliver ;
Lengauer, Thomas .
BIOINFORMATICS, 2010, 26 (10) :1340-1347
[3]   Estimating daily surface NO2 concentrations from satellite data - a case study over Hong Kong using land use regression models [J].
Anand, Jasdeep S. ;
Monks, Paul S. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2017, 17 (13) :8211-8230
[4]  
[Anonymous], 2006, ATMOS CHEM PHYS
[5]   Impact of Coronavirus Outbreak on NO2Pollution Assessed Using TROPOMI and OMI Observations [J].
Bauwens, M. ;
Compernolle, S. ;
Stavrakou, T. ;
Muller, J-F ;
van Gent, J. ;
Eskes, H. ;
Levelt, P. F. ;
van der A, R. ;
Veefkind, J. P. ;
Vlietinck, J. ;
Yu, H. ;
Zehner, C. .
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (11)
[6]   COVID-19 lockdown-induced changes in NO2 levels across India observed by multi-satellite and surface observations [J].
Biswal, Akash ;
Singh, Vikas ;
Singh, Shweta ;
Kesarkar, Amit P. ;
Ravindra, Khaiwal ;
Sokhi, Ranjeet S. ;
Chipperfield, Martyn P. ;
Dhomse, Sandip S. ;
Pope, Richard J. ;
Singh, Tanbir ;
Mor, Suman .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2021, 21 (06) :5235-5251
[7]   A new stratospheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite instruments: applications to OMI [J].
Bucsela, E. J. ;
Krotkov, N. A. ;
Celarier, E. A. ;
Lamsal, L. N. ;
Swartz, W. H. ;
Bhartia, P. K. ;
Boersma, K. F. ;
Veefkind, J. P. ;
Gleason, J. F. ;
Pickering, K. E. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2013, 6 (10) :2607-2626
[8]   Estimation of Surface NO2 Concentrations over Germany from TROPOMI Satellite Observations Using a Machine Learning Method [J].
Chan, Ka Lok ;
Khorsandi, Ehsan ;
Liu, Song ;
Baier, Frank ;
Valks, Pieter .
REMOTE SENSING, 2021, 13 (05) :1-24
[9]   Spatial distribution of aerosol microphysical and optical properties and direct radiative effect from the China Aerosol Remote Sensing Network [J].
Che, Huizheng ;
Xia, Xiangao ;
Zhao, Hujia ;
Dubovik, Oleg ;
Holben, Brent N. ;
Goloub, Philippe ;
Cuevas-Agullo, Emilio ;
Estelles, Victor ;
Wang, Yaqiang ;
Zhu, Jun ;
Qi, Bing ;
Gong, Wei ;
Yang, Honglong ;
Zhang, Renjian ;
Yang, Leiku ;
Chen, Jing ;
Wang, Hong ;
Zheng, Yu ;
Gui, Ke ;
Zhang, Xiaochun ;
Zhang, Xiaoye .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2019, 19 (18) :11843-11864
[10]   Large contribution of meteorological factors to inter-decadal changes in regional aerosol optical depth [J].
Che, Huizheng ;
Gui, Ke ;
Xia, Xiangao ;
Wang, Yaqiang ;
Holben, Brent N. ;
Goloub, Philippe ;
Cuevas-Agullo, Emilio ;
Wang, Hong ;
Zheng, Yu ;
Zhao, Hujia ;
Zhang, Xiaoye .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2019, 19 (16) :10497-10523