Ionic Conduction and Solution Structure in LiPF6 and LiBF4 Propylene Carbonate Electrolytes

被引:129
作者
Hwang, Sunwook [1 ]
Kim, Dong-Hui [1 ]
Shin, Jeong Hee [2 ]
Jang, Jae Eun [2 ]
Ahn, Kyoung Ho [3 ]
Lee, Chulhaeng [3 ]
Lee, Hochun [1 ]
机构
[1] DGIST, Dept Energy Sci & Engn, Daegu 42988, South Korea
[2] DGIST, Dept Informat & Commun Engn, Daegu 42988, South Korea
[3] LG Chem Ltd, Batteries R&D, Daejeon 34122, South Korea
基金
新加坡国家研究基金会;
关键词
MICROWAVE DIELECTRIC-RELAXATION; LITHIUM-ION; ETHYLENE CARBONATE; LIQUID ELECTROLYTES; DIMETHYL CARBONATE; ELECTRICAL CONDUCTANCE; ULTRASONIC RELAXATION; ORGANIC ELECTROLYTES; GAMMA-BUTYROLACTONE; SELF-DIFFUSION;
D O I
10.1021/acs.jpcc.8b06035
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Expanding the performance limit of current Li-ion batteries requires ion-ion and ion-solvent interaction, which governs the ion transport behavior of the electrolytes, to be fully understood as a matter of crucial importance. We herein examine the ionic speciation and conduction behavior of propylene carbonate (PC) electrolytes of 0.1-3.0 M LiPF6 and LiBF4 using Raman spectroscopy, dielectric relaxation spectroscopy (DRS), and pulsed-field gradient NMR (PFG-NMR) spectroscopy. In both LiPF6-PC and LiBF4-PC, free ions and a solvent-shared ion pair (SIP) are dominant species at dilute salt concentrations (<0.8 M), and SIP becomes dominant at intermediate concentrations (0.8-1.5 M). At higher concentrations (1.5-3.0 M), the solvent-shared dimer (SSD) and contact dimer (CD) are dominant in LiPF6-PC, whereas the contact ion pair (CIP), CD, and agglomerate (AGG) prevail in LiBF4-PC. Ionic conduction in 0.1-1.5 M LiPF6-PC and LiBF4-PC is governed by the migration of free ions and SIP. Notably, above 1.5 M of the two PC electrolytes, SSD participates in ionic conduction via the migration mode as well. Furthermore, it is suggested that the large number of CIPs present in LiBF4-PC may contribute to ionic conduction via a Grotthuss-type mechanism.
引用
收藏
页码:19438 / 19446
页数:9
相关论文
共 71 条
[1]   Structural Interactions within Lithium Salt Solvates: Acyclic Carbonates and Esters [J].
Afroz, Taliman ;
Seo, Daniel M. ;
Han, Sang-Don ;
Boyle, Paul D. ;
Henderson, Wesley A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (13) :7022-7027
[2]   THE GROTTHUSS MECHANISM [J].
AGMON, N .
CHEMICAL PHYSICS LETTERS, 1995, 244 (5-6) :456-462
[3]   Ion transport properties of six lithium salts dissolved in γ-butyrolactone studied by self-diffusion and ionic conductivity measurements [J].
Aihara, Y ;
Bando, T ;
Nakagawa, H ;
Yoshida, H ;
Hayamizu, K ;
Akiba, E ;
Price, WS .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (01) :A119-A122
[4]   Ion solvation and ion association in lithium trifluoromethanesulfonate solutions in three aprotic solvents.: An FT-Raman spectroscopic study [J].
Alía, JM ;
Edwards, HGM .
VIBRATIONAL SPECTROSCOPY, 2000, 24 (02) :185-200
[5]   FT-Raman study of ionic interactions in lithium and silver tetrafluoroborate solutions in acrylonitrile [J].
Alia, JM ;
Edwards, HGM .
JOURNAL OF SOLUTION CHEMISTRY, 2000, 29 (09) :781-797
[6]   Vibrational spectra and ion-pair properties of lithium hexafluorophosphate in ethylene carbonate based mixed-solvent systems for lithium batteries [J].
Aroca, R ;
Nazri, R ;
Nazri, GA ;
Camargo, AJ ;
Trsic, M .
JOURNAL OF SOLUTION CHEMISTRY, 2000, 29 (10) :1047-1060
[7]   DIELECTRIC-RELAXATION OF AQUEOUS-ELECTROLYTE SOLUTIONS .2. ION-PAIR RELAXATION OF 1/2, 2/1, AND 2/2 ELECTROLYTES [J].
BARTHEL, J ;
HETZENAUER, H ;
BUCHNER, R .
BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1992, 96 (10) :1424-1432
[8]   DIELECTRIC-RELAXATION OF AQUEOUS-ELECTROLYTE SOLUTIONS .1. SOLVENT RELAXATION OF 1/2, 2/1, AND 2/2 ELECTROLYTE-SOLUTIONS [J].
BARTHEL, J ;
HETZENAUER, H ;
BUCHNER, R .
BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1992, 96 (08) :988-997
[9]   VIBRATIONAL STUDIES OF LITHIUM PERCHLORATE IN PROPYLENE CARBONATE SOLUTIONS [J].
BATTISTI, D ;
NAZRI, GA ;
KLASSEN, B ;
AROCA, R .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (22) :5826-5830
[10]  
Bockris J.O. M., 2012, Modern aspects of electrochemistry