Calculated electron impact dissociation cross sections for molecular chlorine (Cl2)

被引:13
作者
Hamilton, James R. [1 ]
Tennyson, Jonathan [1 ]
Booth, Jean-Paul [2 ]
Gans, Timo [3 ]
Gibson, Andrew R. [2 ,3 ]
机构
[1] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
[2] UPMC Univ Paris 06, Univ Paris Sud, Univ Paris Saclay, Sorbonne Univ,LPP,CNRS,Ecole Polytech, F-91128 Palaiseau, France
[3] Univ York, York Plasma Inst, Dept Phys, York YO10 5DD, N Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
chlorine; cross sections; r-matrix; atomic layer etching; plasma modelling; ENERGY DISTRIBUTION; PLASMA PARAMETERS; DISCHARGE; COLLISIONS; STATES;
D O I
10.1088/1361-6595/aada32
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Electron impact dissociation of Cl-2 is a key process for the formation of Cl atoms in low-temperature plasmas used for industrial etching processes. Despite this, relatively little cross section data exist for this process. In this work, electron impact dissociation cross sections were calculated for Cl-2 molecules using the UK molecular R-matrix code in the low electron energy range and extended to high energies using a scaling depending on the specific nature of each transition. Our results are compared with both previous calculations and with experimental measurements, and the similarities and differences are discussed. In addition, the rate coefficients for electron impact dissociation of Cl-2 are calculated by integrating the cross sections derived in this (and previous) work, with electron energy distribution functions representative of those normally found in low-temperature plasmas used in industry. Depending on the shape and effective temperature of the distribution function, significant differences arise between the rate coefficients calculated from our cross sections and those calculated using previous data. Deviations between the two sets of rate coefficients are particularly pronounced at the low electron temperatures typical of electron beam and remote plasma sources of interest for atomic layer etching and deposition. These differences are principally caused by the higher energy resolution in the near-threshold region in this work, emphasising the importance of accurate, high-resolution cross sections in this energy range.
引用
收藏
页数:8
相关论文
共 51 条
[1]  
Almlof J, 1984, NATO ASI SERIES C, V133
[2]  
Atkins PW., 2014, PHYS CHEM THERMODYNA
[3]   Electron collisions with atoms, ions, molecules, and surfaces: Fundamental science empowering advances in technology [J].
Bartschat, Klaus ;
Kushner, Mark J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (26) :7026-7034
[4]   Controlling the electron energy distribution function of electron beam generated plasmas with molecular gas concentration: I. Experimental results [J].
Boris, D. R. ;
Petrov, G. M. ;
Lock, E. H. ;
Petrova, Tz B. ;
Fernsler, R. F. ;
Walton, S. G. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2013, 22 (06)
[5]  
Burke P. G., 2011, Springer Series on Atomic, Optical, and Plasma Physics.
[6]   UKRmol: a low-energy electron- and positron-molecule scattering suite [J].
Carr, J. M. ;
Galiatsatos, P. G. ;
Gorfinkiel, J. D. ;
Harvey, A. G. ;
Lysaght, M. A. ;
Madden, D. ;
Masin, Z. ;
Plummer, M. ;
Tennyson, J. ;
Varambhia, H. N. .
EUROPEAN PHYSICAL JOURNAL D, 2012, 66 (03)
[7]   Electron interactions with Cl2 [J].
Christophorou, LG ;
Olthoff, JK .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1999, 28 (01) :131-169
[8]  
Cosby P C, 1992, WLTR932004 AER PROP
[9]   Etching with atomic precision by using low electron temperature plasma [J].
Dorf, L. ;
Wang, J-C ;
Rauf, S. ;
Monroy, G. A. ;
Zhang, Y. ;
Agarwal, A. ;
Kenney, J. ;
Ramaswamy, K. ;
Collins, K. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (27)
[10]   GTOBAS: fitting continuum functions with Gaussian-type orbitals [J].
Faure, A ;
Gorfinkiel, JD ;
Morgan, LA ;
Tennyson, J .
COMPUTER PHYSICS COMMUNICATIONS, 2002, 144 (02) :224-241