An Eulerian-Lagrangian approach for incompressible fluids: Local theory

被引:63
作者
Constantin, P [1 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
关键词
Euler equations; blow up;
D O I
10.1090/S0894-0347-00-00364-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:263 / 278
页数:16
相关论文
共 25 条
[1]   TOPOLOGICAL METHODS IN HYDRODYNAMICS [J].
ARNOLD, VI ;
KHESIN, BA .
ANNUAL REVIEW OF FLUID MECHANICS, 1992, 24 :145-166
[2]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[3]   GLOBAL REGULARITY FOR VORTEX PATCHES [J].
BERTOZZI, AL ;
CONSTANTIN, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 152 (01) :19-28
[4]  
BUTTKE TF, 1993, NATO ADV SCI INST SE, V395, P39
[5]  
Chorin A, 1994, Applied mathematical sciences, V103
[6]   Nonsingular surface quasi-geostrophic flow [J].
Constantin, P ;
Nie, Q ;
Schorghofer, N .
PHYSICS LETTERS A, 1998, 241 (03) :168-172
[7]  
Constantin P, 1996, COMMUN PART DIFF EQ, V21, P559
[8]   FORMATION OF STRONG FRONTS IN THE 2-D QUASI-GEOSTROPHIC THERMAL ACTIVE SCALAR [J].
CONSTANTIN, P ;
MAJDA, AJ ;
TABAK, E .
NONLINEARITY, 1994, 7 (06) :1495-1533
[9]  
Constantin P, 1996, INDIANA U MATH J, V45, P67
[10]  
CONSTANTIN P, EULERIAN LAGRANGIAN