Quantitative Derivation and Scattering of the 3D Cubic NLS in the Energy Space

被引:4
作者
Chen, Xuwen [1 ]
Holmer, Justin [2 ]
机构
[1] Univ Rochester, Dept Math, Rochester, NY 14627 USA
[2] Brown Univ, Dept Math, 151 Thayer St, Providence, RI 02912 USA
关键词
N-body quantum BBGKY hierarchy; Convergence rate; Klainerman-Machedon theory; Nonlinear scattering; Koch-Tataru U-V spaces; NONLINEAR SCHRODINGER-EQUATION; GROSS-PITAEVSKII HIERARCHY; GLOBAL WELL-POSEDNESS; BOSE-EINSTEIN CONDENSATION; MEAN-FIELD APPROXIMATION; MANY-BODY DYNAMICS; RIGOROUS DERIVATION; UNCONDITIONAL UNIQUENESS; INTERACTING BOSONS; PAIR EXCITATIONS;
D O I
10.1007/s40818-022-00126-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the derivation of the defocusing cubic nonlinear Schrodinger equation (NLS) on R-3 from quantum N-body dynamics. We reformat the hierarchy approach with Klainerman-Machedon theory and prove a bi-scattering theorem for the NLS to obtain convergence rate estimates under H-1 regularity. The H(1 )convergence rate estimate we obtain is almost optimal for H(1 )datum, and immediately improves if we have any extra regularity on the limiting initial one-particle state.
引用
收藏
页数:39
相关论文
共 75 条
[1]   Rigorous derivation of the cubic NLS in dimension one [J].
Adami, Riccardo ;
Golse, Francois ;
Teta, Alessandro .
JOURNAL OF STATISTICAL PHYSICS, 2007, 127 (06) :1193-1220
[2]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[3]   Quantitative Derivation of the Gross-Pitaevskii Equation [J].
Benedikter, Niels ;
de Oliveira, Gustavo ;
Schlein, Benjamin .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (08) :1399-1482
[4]   Quantum Many-Body Fluctuations Around Nonlinear Schrodinger Dynamics [J].
Boccato, Chiara ;
Cenatiempo, Serena ;
Schlein, Benjamin .
ANNALES HENRI POINCARE, 2017, 18 (01) :113-191
[5]   Scattering in the energy space and below for 3D NLS [J].
Bourgain, J .
JOURNAL D ANALYSE MATHEMATIQUE, 1998, 75 (1) :267-297
[6]  
Bourgain J., 1999, NEW GLOBAL WELL POSE
[7]   GROSS-PITAEVSKII DYNAMICS FOR BOSE-EINSTEIN CONDENSATES [J].
Brennecke, Christian ;
Schlein, Benjamin .
ANALYSIS & PDE, 2019, 12 (06) :1513-1596
[8]   Unconditional Uniqueness for the Cubic Gross-Pitaevskii Hierarchy via Quantum de Finetti [J].
Chen, Thomas ;
Hainzl, Christian ;
Pavlovic, Natasa ;
Seiringer, Robert .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (10) :1845-1884
[9]   Higher Order Energy Conservation and Global Well-Posedness of Solutions for Gross-Pitaevskii Hierarchies [J].
Chen, Thomas ;
Pavlovic, Natasa .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (09) :1597-1634
[10]   Derivation in Strong Topology and Global Well-Posedness of Solutions to the Gross-Pitaevskii Hierarchy [J].
Chen, Thomas ;
Taliaferro, Kenneth .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (09) :1658-1693