Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces

被引:247
作者
Eymard, R. [2 ]
Gallouet, T. [1 ]
Herbin, R. [1 ]
机构
[1] Univ Marseille, CMI, F-13453 Marseille 13, France
[2] Univ Paris Est, F-77454 Marne La Vallee 2, France
关键词
heterogeneous anisotropic diffusion; nonconforming grids; finite-volume schemes; FINITE-VOLUME SCHEME; UNSTRUCTURED GRIDS; POLYHEDRAL MESHES; CONVERGENCE; OPERATORS; MEDIA; APPROXIMATION; CONVECTION;
D O I
10.1093/imanum/drn084
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A symmetric discretization scheme for heterogeneous anisotropic diffusion problems on general meshes is developed and studied. The unknowns of this scheme are the values at the centre of the control volumes and at some internal interfaces that may, for instance, be chosen at the diffusion tensor discontinuities. The scheme is therefore completely cell centred if no edge unknown is kept. It is shown to be accurate for several numerical examples. The convergence of the approximate solution to the continuous solution is proved for general (possibly discontinuous) tensors and general (possibly nonconforming) meshes and with no regularity assumption on the solution. An error estimate is then deduced under suitable regularity assumptions on the solution.
引用
收藏
页码:1009 / 1043
页数:35
相关论文
共 30 条
[21]   A new colocated finite volume scheme for the incompressible Navier-Stokes equations on general non matching grids [J].
Eymard, Robert ;
Herbin, Raphaele .
COMPTES RENDUS MATHEMATIQUE, 2007, 344 (10) :659-662
[22]   A new finite volume scheme for anisotropic diffusion problems on general grids:: convergence analysis [J].
Eymard, Robert ;
Gallouet, Thierry ;
Herbin, Raphaele .
COMPTES RENDUS MATHEMATIQUE, 2007, 344 (06) :403-406
[23]   Numerical convergence of a parameterisation method for the solution of a highly anisotropic two-dimensional elliptic problem [J].
Guillaume, P ;
Latocha, V .
JOURNAL OF SCIENTIFIC COMPUTING, 2005, 25 (03) :423-444
[24]  
Herbin R., 1995, NUMER METH PARTIAL D, V11, P165, DOI DOI 10.1002/NUM.1690110205.URL
[25]  
Herbin R., 2008, FINITE VOLUMES COMPL, P659
[26]   Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes [J].
Hermeline, F .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2003, 192 (16-18) :1939-1959
[27]  
Kuznetsov Y. A., 2005, J NUMER MATH, V13, P33
[28]   Finite volume monotone scheme for highly anisotropic diffusion operators on unstructured triangular meshes [J].
Le Potier, C .
COMPTES RENDUS MATHEMATIQUE, 2005, 341 (12) :787-792
[29]  
Patankar S., 1980, SERIES COMPUTATIONAL, VXIII
[30]   Equivalence between mixed finite element and multi-point finite volume methods [J].
Vohralík, M .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (07) :525-528