Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces

被引:247
作者
Eymard, R. [2 ]
Gallouet, T. [1 ]
Herbin, R. [1 ]
机构
[1] Univ Marseille, CMI, F-13453 Marseille 13, France
[2] Univ Paris Est, F-77454 Marne La Vallee 2, France
关键词
heterogeneous anisotropic diffusion; nonconforming grids; finite-volume schemes; FINITE-VOLUME SCHEME; UNSTRUCTURED GRIDS; POLYHEDRAL MESHES; CONVERGENCE; OPERATORS; MEDIA; APPROXIMATION; CONVECTION;
D O I
10.1093/imanum/drn084
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A symmetric discretization scheme for heterogeneous anisotropic diffusion problems on general meshes is developed and studied. The unknowns of this scheme are the values at the centre of the control volumes and at some internal interfaces that may, for instance, be chosen at the diffusion tensor discontinuities. The scheme is therefore completely cell centred if no edge unknown is kept. It is shown to be accurate for several numerical examples. The convergence of the approximate solution to the continuous solution is proved for general (possibly discontinuous) tensors and general (possibly nonconforming) meshes and with no regularity assumption on the solution. An error estimate is then deduced under suitable regularity assumptions on the solution.
引用
收藏
页码:1009 / 1043
页数:35
相关论文
共 30 条
[1]   Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media [J].
Aavatsmark, I ;
Barkve, T ;
Boe, O ;
Mannseth, T .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 127 (01) :2-14
[2]   Discretization on unstructured grids for inhomogeneous, anisotropic media. Part II: Discussion and numerical results [J].
Aavatsmark, I ;
Barkve, T ;
Boe, O ;
Mannseth, T .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (05) :1717-1736
[3]   Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: Derivation of the methods [J].
Aavatsmark, I ;
Barkve, T ;
Boe, O ;
Mannseth, T .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (05) :1700-1716
[4]  
AGELAS L, 2008, FINITE VOLUMES COMPL, V5, P35
[5]  
[Anonymous], 1979, Petroleum Reservoir Simulation
[6]   On vertex reconstructions for cell-centered finite volume approximations of 2d anisotropic diffusion problems [J].
Bertolazzi, Enrico ;
Manzini, Gianmarco .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (01) :1-32
[7]   FINITE VOLUME METHOD FOR 2D LINEAR AND NONLINEAR ELLIPTIC PROBLEMS WITH DISCONTINUITIES [J].
Boyer, Franck ;
Hubert, Florence .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (06) :3032-3070
[8]   Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes [J].
Brezzi, F ;
Lipnikov, K ;
Shashkov, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) :1872-1896
[9]   A family of mimetic finite difference methods on polygonal and polyhedral meshes [J].
Brezzi, F ;
Lipnikov, K ;
Simoncini, V .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (10) :1533-1551
[10]  
Brezzi F., 1991, Mixed and Hybrid Finite Element Methods, V15