FLOW-MAP: a graph-based, force-directed layout algorithm for trajectory mapping in single-cell time course datasets

被引:19
作者
Ko, Melissa E. [1 ]
Williams, Corey M. [2 ,3 ]
Fread, Kristen I. [2 ]
Goggin, Sarah M. [4 ]
Rustagi, Rohit S. [2 ]
Fragiadakis, Gabriela K. [5 ]
Nolan, Garry P. [5 ]
Zunder, Eli R. [2 ]
机构
[1] Stanford Sch Med, Canc Biol Program, Stanford, CA 94305 USA
[2] Univ Virginia, Dept Biomed Engn, Charlottesville, VA 22904 USA
[3] Univ Virginia, Robert M Berne Cardiovasc Res Ctr, Charlottesville, VA USA
[4] Univ Virginia, Neurosci Grad Program, Charlottesville, VA USA
[5] Stanford Univ, Dept Microbiol & Immunol, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
EMBRYONIC STEM-CELLS; MASS CYTOMETRY; DIFFUSION MAPS; RNA-SEQ; REVEALS; VISUALIZATION; DIFFERENTIATION; HETEROGENEITY; REGULATORS; RESOLUTION;
D O I
10.1038/s41596-019-0246-3
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
High-dimensional single-cell technologies present new opportunities for biological discovery, but the complex nature of the resulting datasets makes it challenging to perform comprehensive analysis. One particular challenge is the analysis of single-cell time course datasets: how to identify unique cell populations and track how they change across time points. To facilitate this analysis, we developed FLOW-MAP, a graphical user interface (GUI)-based software tool that uses graph layout analysis with sequential time ordering to visualize cellular trajectories in high-dimensional single-cell datasets obtained from flow cytometry, mass cytometry or single-cell RNA sequencing (scRNAseq) experiments. Here we provide a detailed description of the FLOW-MAP algorithm and how to use the open-source R package FLOWMAPR via its GUI or with text-based commands. This approach can be applied to many dynamic processes, including in vitro stem cell differentiation, in vivo development, oncogenesis, the emergence of drug resistance and cell signaling dynamics. To demonstrate our approach, we perform a step-by-step analysis of a single-cell mass cytometry time course dataset from mouse embryonic stem cells differentiating into the three germ layers: endoderm, mesoderm and ectoderm. In addition, we demonstrate FLOW-MAP analysis of a previously published scRNAseq dataset. Using both synthetic and experimental datasets for comparison, we perform FLOW-MAP analysis side by side with other single-cell analysis methods, to illustrate when it is advantageous to use the FLOW-MAP approach. The protocol takes between 30 min and 1.5 h to complete. This protocol describes FLOW-MAP, a graph-based algorithm for visualizing cellular trajectories in single-cell time course datasets. The R package can be operated via its GUI or using text-based commands.
引用
收藏
页码:398 / 420
页数:23
相关论文
共 66 条
[1]   viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia [J].
Amir, El-ad David ;
Davis, Kara L. ;
Tadmor, Michelle D. ;
Simonds, Erin F. ;
Levine, Jacob H. ;
Bendall, Sean C. ;
Shenfeld, Daniel K. ;
Krishnaswamy, Smita ;
Nolan, Garry P. ;
Pe'er, Dana .
NATURE BIOTECHNOLOGY, 2013, 31 (06) :545-+
[2]   Visualization and cellular hierarchy inference of single-cell data using SPADE [J].
Anchang, Benedict ;
Hart, Tom D. P. ;
Bendall, Sean C. ;
Qiu, Peng ;
Bjornson, Zach ;
Linderman, Michael ;
Nolan, Garry P. ;
Plevritis, Sylvia K. .
NATURE PROTOCOLS, 2016, 11 (07) :1264-1279
[3]   Multiplexed ion beam imaging of human breast tumors [J].
Angelo, Michael ;
Bendall, Sean C. ;
Finck, Rachel ;
Hale, Matthew B. ;
Hitzman, Chuck ;
Borowsky, Alexander D. ;
Levenson, Richard M. ;
Lowe, John B. ;
Liu, Scot D. ;
Zhao, Shuchun ;
Natkunam, Yasodha ;
Nolan, Garry P. .
NATURE MEDICINE, 2014, 20 (04) :436-+
[4]   destiny: diffusion maps for large-scale single cell data in R [J].
Angerer, Philipp ;
Haghverdi, Laleh ;
Buettner, Maren ;
Theis, Fabian J. ;
Marr, Carsten ;
Buettner, Florian .
BIOINFORMATICS, 2016, 32 (08) :1241-1243
[5]   Mass Cytometry: Technique for Real Time Single Cell Multitarget Immunoassay Based on Inductively Coupled Plasma Time-of-Flight Mass Spectrometry [J].
Bandura, Dmitry R. ;
Baranov, Vladimir I. ;
Ornatsky, Olga I. ;
Antonov, Alexei ;
Kinach, Robert ;
Lou, Xudong ;
Pavlov, Serguei ;
Vorobiev, Sergey ;
Dick, John E. ;
Tanner, Scott D. .
ANALYTICAL CHEMISTRY, 2009, 81 (16) :6813-6822
[6]  
Bastian M., 2009, Proceedings of the International AAAI Conference on Web and Social Media, V3, P361, DOI DOI 10.1609/ICWSM.V3I1.13937
[7]   Dimensionality reduction for visualizing single-cell data using UMAP [J].
Becht, Etienne ;
McInnes, Leland ;
Healy, John ;
Dutertre, Charles-Antoine ;
Kwok, Immanuel W. H. ;
Ng, Lai Guan ;
Ginhoux, Florent ;
Newell, Evan W. .
NATURE BIOTECHNOLOGY, 2019, 37 (01) :38-+
[8]   Single-Cell Trajectory Detection Uncovers Progression and Regulatory Coordination in Human B Cell Development [J].
Bendall, Sean C. ;
Davis, Kara L. ;
Amir, El-ad David ;
Tadmor, Michelle D. ;
Simonds, Erin F. ;
Chen, Tiffany J. ;
Shenfeld, Daniel K. ;
Nolan, Garry P. ;
Pe'er, Dana .
CELL, 2014, 157 (03) :714-725
[9]   Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum [J].
Bendall, Sean C. ;
Simonds, Erin F. ;
Qiu, Peng ;
Amir, El-ad D. ;
Krutzik, Peter O. ;
Finck, Rachel ;
Bruggner, Robert V. ;
Melamed, Rachel ;
Trejo, Angelica ;
Ornatsky, Olga I. ;
Balderas, Robert S. ;
Plevritis, Sylvia K. ;
Sachs, Karen ;
Pe'er, Dana ;
Tanner, Scott D. ;
Nolan, Garry P. .
SCIENCE, 2011, 332 (6030) :687-696
[10]   Fast unfolding of communities in large networks [J].
Blondel, Vincent D. ;
Guillaume, Jean-Loup ;
Lambiotte, Renaud ;
Lefebvre, Etienne .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,