A fractional step method on a special mesh for the resolution of multidimensional evolutionary convection-diffusion problems

被引:62
作者
Clavero, C [1 ]
Jorge, JC
Lisbona, F
Shishkin, GI
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, Zaragoza, Spain
[2] Univ Navarra, Dept Matemat & Informat, E-31080 Pamplona, Spain
[3] Inst Math & Mech, Ekaterinburg, Russia
基金
俄罗斯基础研究基金会;
关键词
singular perturbation; alternating directions; uniform convergence;
D O I
10.1016/S0168-9274(98)00014-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider numerical schemes for multidimensional evolutionary convection-diffusion problems, where the approximation properties are uniform in the diffusion parameter. In order to obtain an efficient method, to provide good approximations with independence of the size of the diffusion parameter, we have developed a numerical method which combines a finite difference spatial discretization on a special mesh and a fractional step method for the time variable. The special mesh allows a correct approximation of the solution in the boundary layers, while the fractional steps permits a law computational cost algorithm. Some numerical examples confirming the expected behavior of the method are shown, (C) 1998 Elsevier Science B.V. and IMACS. All rights reserved.
引用
收藏
页码:211 / 231
页数:21
相关论文
共 25 条
[1]  
Clavero C, 1998, J COMPUT MATH, V16, P27
[2]  
Clavero C., 1993, Applications of Advanced Computational Methods for Boundary and Interior Layers, P33
[3]  
CLAVERO C, 1991, P INT C DIFF EQ WORL, P398
[4]  
CLAVERO C, 1997, LECT NOTES COMP SCI, P106
[5]  
FARRELL PA, 1987, IMA J NUMER ANAL, V7, P459, DOI 10.1093/imanum/7.4.459
[6]  
GARTLAND EC, 1987, MATH COMPUT, V48, P551, DOI 10.1090/S0025-5718-1987-0878690-0
[7]  
GARTLAND EC, 1988, MATH COMPUT, V51, P631, DOI 10.1090/S0025-5718-1988-0935072-1
[8]   SPECIAL MESHES FOR FINITE-DIFFERENCE APPROXIMATIONS TO AN ADVECTION-DIFFUSION EQUATION WITH PARABOLIC LAYERS [J].
HEGARTY, AF ;
MILLER, JJH ;
ORIORDAN, E ;
SHISHKIN, GI .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 117 (01) :47-54
[9]  
HEGARTY AF, 1994, E W J NUMER MATH, V2, P65
[10]  
HERCEG D, 1990, NUMER MATH, V56, P675, DOI 10.1007/BF01405196