Invariant characterization of the Kerr spacetime: Locating the horizon and measuring the mass and spin of rotating black holes using curvature invariants

被引:37
作者
Abdelqader, Majd [1 ]
Lake, Kayll [1 ]
机构
[1] Queens Univ, Dept Phys, Kingston, ON K7L 3N6, Canada
来源
PHYSICAL REVIEW D | 2015年 / 91卷 / 08期
基金
加拿大自然科学与工程研究理事会;
关键词
RIEMANN TENSOR; SET;
D O I
10.1103/PhysRevD.91.084017
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We provide an invariant characterization of the physical properties of the Kerr spacetime. We introduce two dimensionless invariants, constructed out of some known curvature invariants, that act as detectors for the event horizon and ergosurface of the Kerr black hole. We also show that the mass and angular momentum can be extracted from local measurements of the curvature invariants, which in the weak field limit could be used to approximate the total angular momentum and mass of a system of merging black holes. Finally, we introduce a dimensionless invariant that gives a local measure of the "Kerrness" of the spacetime.
引用
收藏
页数:9
相关论文
共 23 条
[1]   Visualizing spacetime curvature via gradient flows. III. The Kerr metric and the transitional values of the spin parameter [J].
Abdelqader, Majd ;
Lake, Kayll .
PHYSICAL REVIEW D, 2013, 88 (06)
[2]   Visualizing spacetime curvature via gradient flows. II. An example of the construction of a Newtonian analogue [J].
Abdelqader, Majd ;
Lake, Kayll .
PHYSICAL REVIEW D, 2012, 86 (12)
[3]   Geometric Invariant Measuring the Deviation from Kerr Data [J].
Baeckdahl, Thomas ;
Kroon, Juan A. Valiente .
PHYSICAL REVIEW LETTERS, 2010, 104 (23)
[4]  
Baumgarte T., 2010, NUMERICAL RELATIVITY
[5]   ALGEBRAIC INVARIANTS OF THE RIEMANN TENSOR IN A 4-DIMENSIONAL LORENTZIAN SPACE [J].
CARMINATI, J ;
MCLENAGHAN, RG .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (11) :3135-3140
[6]  
Chazy J., 1924, Bull. Soc. Math. Fr., V52, P17
[7]   Second order scalar invariants of the Riemann tensor: Applications to black hole spacetimes [J].
Cherubini, C ;
Bini, D ;
Capozziello, S ;
Ruffini, R .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2002, 11 (06) :827-841
[8]   Note on the invariant classification of vacuum type D spacetimes [J].
Coley, A. ;
Hervik, S. .
CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (24)
[9]  
Curzon HEJ, 1925, P LOND MATH SOC, V23, P477
[10]   An intrinsic characterization of the Schwarzschild metric [J].
Ferrando, JJ ;
Saez, JA .
CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (05) :1323-1330