Frequency domain approach for the polynomial stability of a system of partially damped wave equations

被引:49
作者
Liu, Zhuangyi [1 ]
Rao, Bopeng
机构
[1] Univ Minnesota, Dept Math & Stat, Duluth, MN 55812 USA
[2] Univ Strasbourg, Inst Rech Math Avancee, F-67084 Strasbourg, France
关键词
indirect damping; polynomial decay rate; frequency domain;
D O I
10.1016/j.jmaa.2007.02.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the stability of a system of wave equations which are weakly coupled and partially damped. Using a frequency domain approach based on the growth of the resolvent on the imaginary axis, we establish the polynomial energy decay rate for smooth initial data. We show that the behavior of the system is sensitive to the arithmetic property of the ratio of the wave propagation speeds of the two equations. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:860 / 881
页数:22
相关论文
共 33 条
[11]  
Huang FL., 1985, ANN DIFFERENTIAL EQU, V1, P43
[12]  
Khodja FA, 2000, DYN CONTIN DISCRET I, V7, P207
[13]   Energy decay rates for the semilinear wave equation with nonlinear localized damping and source terms [J].
Lasiecka, I ;
Toundykov, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (08) :1757-1797
[14]  
LASIECKA I, 1986, J MATH PURE APPL, V65, P149
[15]  
Lasiecka I., 2002, CBMS NSF LECT NOTES
[16]  
LASIECKA I., 1993, DIFFERENTIAL INTEGRA, V6, P507
[17]  
Lebeau G, 1996, MATH PHYS S, V19, P73
[18]   Stabilization of wave equations along the boundary [J].
Lebeau, G ;
Robbiano, L .
DUKE MATHEMATICAL JOURNAL, 1997, 86 (03) :465-491
[19]  
LIONS JL, 1968, PROBLEMES NONHOMOGEN, V1
[20]  
Littman W, 1998, SIAM J APPL MATH, V59, P17, DOI 10.1137/S0036139996314106