BLOWUP FOR BIHARMONIC NLS

被引:55
作者
Boulenger, Thomas [1 ]
Lenzmann, Enno [1 ]
机构
[1] Univ Basel, Dept Math & Comp Sci, Spiegelgasse 1, CH-4051 Basel, Switzerland
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2017年 / 50卷 / 03期
基金
瑞士国家科学基金会;
关键词
NONLINEAR SCHRODINGER-EQUATION; GLOBAL WELL-POSEDNESS; SINGULAR SOLUTIONS; UP SOLUTIONS; 4TH-ORDER; SCATTERING; DIMENSIONS; INEQUALITIES; DISPERSION;
D O I
10.24033/asens.2326
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Cauchy problem for the biharmonic (i.e., fourth-order) NLS with focusing nonlinearity given by i partial derivative(t)u = Delta(2)u - mu Delta u - vertical bar u vertical bar(2 sigma)u for (t,x) is an element of [0, T) x R-d, where 0 < sigma < infinity for d 4 and 0 < sigma <= 4/(d - 4) for >= 5; and mu is an element of R is some parameter to include a possible lower-order dispersion. In the mass-supercritical case sigma > 4/d, we prove a general result on finite-time blowup for radial data in H-2 (R-d) in any dimension >= 2. Moreover, we derive a universal upper bound for the blowup rate for suitable 4/d < sigma < 4/(d 4). In the mass-critical case a = 4/d, we prove a general blowup result in finite or infinite time for radial data in H-2 (R-d). As a key ingredient, we utilize the time evolution of a nonnegative quantity, which we call the (localized) Riesz bivariance for biharmonic NLS. This construction provides us with a suitable substitute for the variance used for classical NLS problems. In addition, we prove a radial symmetry result for ground states for the biharmonic NLS, which may be of some value for the related elliptic problem.
引用
收藏
页码:503 / 544
页数:42
相关论文
共 40 条
[1]   Singular solutions of the L2-supercritical biharmonic nonlinear Schrodinger equation [J].
Baruch, G. ;
Fibich, G. .
NONLINEARITY, 2011, 24 (06) :1843-1859
[2]   SINGULAR SOLUTIONS OF THE BIHARMONIC NONLINEAR SCHRODINGER EQUATION [J].
Baruch, G. ;
Fibich, G. ;
Mandelbaum, E. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2010, 70 (08) :3319-3341
[3]   Ring-type singular solutions of the biharmonic nonlinear Schrodinger equation [J].
Baruch, G. ;
Fibich, G. ;
Mandelbaum, E. .
NONLINEARITY, 2010, 23 (11) :2867-2887
[4]   Maximizers for Gagliardo-Nirenberg inequalities and related non-local problems [J].
Bellazzini, Jacopo ;
Frank, Rupert L. ;
Visciglia, Nicola .
MATHEMATISCHE ANNALEN, 2014, 360 (3-4) :653-673
[5]   Dispersion estimates for fourth order Schrodinger equations [J].
Ben-Artzi, M ;
Koch, H ;
Saut, JC .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (02) :87-92
[6]  
BOULENGER T., UNPUB
[7]   Blowup for fractional NLS [J].
Boulenger, Thomas ;
Himmelsbach, Dominik ;
Lenzmann, Enno .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (09) :2569-2603
[8]  
BRASCAMP H. J., 1974, J. Funct. Anal., V17, P227
[9]   EXTREMALS OF FUNCTIONALS WITH COMPETING SYMMETRIES [J].
CARLEN, EA ;
LOSS, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 88 (02) :437-456
[10]  
Cazenave T, 2003, Semilinear Schrodinger Equations