A symmetry analysis of some classes of evolutionary nonlinear (2+1)-diffusion equations with variable diffusivity

被引:4
作者
Bokhari, Ashfaque H. [3 ]
Al Dweik, Ahmad Y. [3 ]
Kara, A. H. [1 ,2 ]
Zaman, F. D. [3 ]
机构
[1] Univ Witwatersrand, Sch Math, ZA-2050 Johannesburg, South Africa
[2] Univ Witwatersrand, Ctr Differential Equat Continuum Mech & Applicat, ZA-2050 Johannesburg, South Africa
[3] King Fahd Univ Petr & Minerals, Dept Math Sci, Dhahran 31261, Saudi Arabia
关键词
(2+1)-nonlinear diffusion equation; Variable diffusivity; Complete classification; SEPARATION;
D O I
10.1007/s11071-010-9704-8
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper the (2+1)-nonlinear diffusion equation u (t) -div(f(u)grad u)=0 with variable diffusivity is considered. Using the Lie method, a complete symmetry classification of the equation is presented. Reductions, via two-dimensional Lie subalgebras of the equation, to first- or second-order ordinary differential equations are given. In a few interesting cases exact solutions are presented.
引用
收藏
页码:127 / 138
页数:12
相关论文
共 11 条
[1]   Symmetry classifications and reductions of some classes of (2+1)-nonlinear heat equation [J].
Ahmad, A. ;
Bokhari, Ashfaque H. ;
Kara, A. H. ;
Zaman, F. D. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 339 (01) :175-181
[2]  
[Anonymous], PHYS D
[3]  
Bluman G. W., 2013, Symmetries and Differential Equations, V81
[4]  
Cantwell B J., 2002, Introduction to symmetry analysis
[5]   Separation of variables for the 1-dimensional non-linear diffusion equation [J].
Doyle, PW ;
Vassiliou, PJ .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1998, 33 (02) :315-326
[6]   Separation of variables of a generalized porous medium equation with nonlinear source [J].
Estévez, PG ;
Qu, CZ ;
Zhang, SL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 275 (01) :44-59
[7]  
Ibragimov NK., 1999, Elementary Lie group analysis and ordinary differential equations
[8]  
Ovsiannikov L. V., 1982, Group Analysis of Differential Equations
[9]   Equivalence transformations for first order balance equations [J].
Özer, S ;
Suhubi, E .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2004, 42 (11-12) :1305-1324
[10]  
Polyanin A.D., 2002, Handbook of Linear Partial Differential Equations for Engineers and Scientists