STABLE SOLITARY WAVES FOR ONE-DIMENSIONAL SCHRODINGER-POISSON SYSTEMS

被引:0
作者
Zhang, Guoqing [1 ]
Zhang, Weiguo [1 ]
Liu, Sanyang [2 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
[2] Xidian Univ, Coll Math & Stat, Xian 710071, Shanxi, Peoples R China
关键词
Solitary waves; orbital stability; Schrodinger-Poisson system; CONCENTRATION-COMPACTNESS PRINCIPLE; EQUATIONS; CALCULUS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the concentration compactness principle, we shoe the existence of ground state solitary wave solutions for one-dimensional Schrodinger-Poisson systems with large L-2-norm in the energy space. We also obtain orbital stability for ground state solitary waves.
引用
收藏
页数:10
相关论文
共 15 条
[1]  
[Anonymous], 1984, Ann. Inst. H. Poincare Anal. Non Lineaire, V1, P109
[2]   Stable standing waves for a class of nonlinear Schrodinger-Poisson equations [J].
Bellazzini, Jacopo ;
Siciliano, Gaetano .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2011, 62 (02) :267-280
[3]   On an exchange interaction model for quantum transport:: The Schrodinger-Poisson-Slater system [J].
Bokanowski, O ;
López, JL ;
Soler, J .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (10) :1397-1412
[4]   EXISTENCE OF STEADY STATES FOR THE MAXWELL-SCHRODINGER-POISSON SYSTEM: EXPLORING THE APPLICABILITY OF THE CONCENTRATION-COMPACTNESS PRINCIPLE [J].
Catto, I. ;
Dolbeault, J. ;
Sanchez, O. ;
Soler, J. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (10) :1915-1938
[5]  
Cazenave, 2003, LECT NOTES MATH, V10
[6]   ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS [J].
CAZENAVE, T ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) :549-561
[7]   The one-dimensional Schrodinger-Newton equations [J].
Choquard, Philippe ;
Stubbe, Joachim .
LETTERS IN MATHEMATICAL PHYSICS, 2007, 81 (02) :177-184
[8]   Well posedness and smoothing effect of Schrodinger-Poisson equation [J].
De Leo, M. ;
Rial, D. .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (09)
[9]   Soliton solutions of the nonlinear Schrodinger equation with nonlocal Coulomb and Yukawa interactions [J].
Hartmann, Betti ;
Zakrzewski, Wojtek J. .
PHYSICS LETTERS A, 2007, 366 (06) :540-544
[10]  
Hasegawa A., 1990, OPTICAL SOLITONS FIB