BiTransformer: augmenting semantic context in video captioning via bidirectional decoder

被引:5
|
作者
Zhong, Maosheng [1 ]
Zhang, Hao [1 ]
Wang, Yong [1 ]
Xiong, Hao [1 ]
机构
[1] Jiangxi Normal Univ, 99 Ziyang Ave, Nanchang, Jiangxi, Peoples R China
关键词
Video captioning; Bidirectional decoding; Transformer;
D O I
10.1007/s00138-022-01329-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Video captioning is an important problem involved in many applications. It aims to generate some descriptions of the content of a video. Most of existing methods for video captioning are based on the deep encoder-decoder models, particularly, the attention-based models (say Transformer). However, the existing transformer-based models may not fully exploit the semantic context, that is, only using the left-to-right style of context but ignoring the right-to-left counterpart. In this paper, we introduce a bidirectional (forward-backward) decoder to exploit both the left-to-right and right-to-left styles of context for the Transformer-based video captioning model. Thus, our model is called bidirectional Transformer (dubbed BiTransformer). Specifically, in the bridge of the encoder and forward decoder (aiming to capture the left-to-right context) used in the existing Transformer-based models, we plug in a backward decoder to capture the right-to-left context. Equipped with such bidirectional decoder, the semantic context of videos will be more fully exploited, resulting in better video captions. The effectiveness of our model is demonstrated over two benchmark datasets, i.e., MSVD and MSR-VTT,via comparing to the state-of-the-art methods. Particularly, in terms of the important evaluation metric CIDEr, the proposed model outperforms the state-of-the-art models with improvements of 1.2% in both datasets.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] BiTransformer: augmenting semantic context in video captioning via bidirectional decoder
    Maosheng Zhong
    Hao Zhang
    Yong Wang
    Hao Xiong
    Machine Vision and Applications, 2022, 33
  • [2] Semantic Enhanced Encoder-Decoder Network (SEN) for Video Captioning
    Gui, Yuling
    Guo, Dan
    Zhao, Ye
    PROCEEDINGS OF THE 2ND WORKSHOP ON MULTIMEDIA FOR ACCESSIBLE HUMAN COMPUTER INTERFACES (MAHCI '19), 2019, : 25 - 32
  • [3] Video Captioning with Semantic Guiding
    Yuan, Jin
    Tian, Chunna
    Zhang, Xiangnan
    Ding, Yuxuan
    Wei, Wei
    2018 IEEE FOURTH INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM), 2018,
  • [4] Modeling Context-Guided Visual and Linguistic Semantic Feature for Video Captioning
    Sun, Zhixin
    Zhong, Xian
    Chen, Shuqin
    Liu, Wenxuan
    Feng, Duxiu
    Li, Lin
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2021, PT V, 2021, 12895 : 677 - 689
  • [5] Memory-attended semantic context-aware network for video captioning
    Chen, Shuqin
    Zhong, Xian
    Wu, Shifeng
    Sun, Zhixin
    Liu, Wenxuan
    Jia, Xuemei
    Xia, Hongxia
    SOFT COMPUTING, 2021, 28 (Suppl 2) : 425 - 425
  • [6] Video Captioning with Visual and Semantic Features
    Lee, Sujin
    Kim, Incheol
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2018, 14 (06): : 1318 - 1330
  • [7] Bidirectional transformer with knowledge graph for video captioning
    Zhong, Maosheng
    Chen, Youde
    Zhang, Hao
    Xiong, Hao
    Wang, Zhixiang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (20) : 58309 - 58328
  • [8] Discriminative Latent Semantic Graph for Video Captioning
    Bai, Yang
    Wang, Junyan
    Long, Yang
    Hu, Bingzhang
    Song, Yang
    Pagnucco, Maurice
    Guan, Yu
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 3556 - 3564
  • [9] Chained semantic generation network for video captioning
    Mao L.
    Gao H.
    Yang D.
    Zhang R.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2022, 30 (24): : 3198 - 3209
  • [10] MULTIMODAL SEMANTIC ATTENTION NETWORK FOR VIDEO CAPTIONING
    Sun, Liang
    Li, Bing
    Yuan, Chunfeng
    Zha, Zhengjun
    Hu, Weiming
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 1300 - 1305