Low-Temperature Electrolyte Design for Lithium-Ion Batteries: Prospect and Challenges

被引:196
作者
Li, Qian [1 ,2 ]
Liu, Gang [1 ,2 ]
Cheng, Haoran [1 ,2 ]
Sun, Qujiang [3 ]
Zhang, Junli [3 ]
Ming, Jun [1 ,2 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, Peoples R China
[2] Univ Sci & Technol China, Sch Appl Chem & Engn, Hefei 230026, Peoples R China
[3] Lanzhou Univ, Sch Phys Sci & Technol, Key Lab Magnetism & Magnet Mat, Minist Educ, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
electrode; lithium-ion batteries; low-temperature electrolyte; solid electrolyte interphase; solvation structure; PROPYLENE CARBONATE; SOLID-ELECTROLYTE; ESTER COSOLVENTS; ELECTROCHEMICAL PERFORMANCE; FLUOROETHYLENE CARBONATE; NONAQUEOUS ELECTROLYTES; POLYMER ELECTROLYTE; GRAPHITE ELECTRODE; ETHYLENE CARBONATE; LIFEPO4/C CATHODE;
D O I
10.1002/chem.202101407
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium-ion batteries have dominated the energy market from portable electronic devices to electric vehicles. However, the LIBs applications are limited seriously when they were operated in the cold regions and seasons if there is no thermal protection. This is because the Li+ transportation capability within the electrode and particularly in the electrolyte dropped significantly due to the decreased electrolyte liquidity, leading to a sudden decline in performance and short cycle-life. Thus, design a low-temperature electrolyte becomes ever more important to enable the further applications of LIBs. Herein, we summarize the low-temperature electrolyte development from the aspects of solvent, salt, additives, electrolyte analysis, and performance in the different battery systems. Then, we also introduce the recent new insight about the cation solvation structure, which is significant to understand the interfacial behaviors at the low temperature, aiming to guide the design of a low-temperature electrolyte more effectively.
引用
收藏
页码:15842 / 15865
页数:24
相关论文
共 142 条
[1]   Investigating the low-temperature impedance increase of lithium-ion cells [J].
Abraham, D. P. ;
Heaton, J. R. ;
Kang, S. -H. ;
Dees, D. W. ;
Jansen, A. N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (01) :A41-A47
[2]  
Amin R, 2015, J ELECTROCHEM SOC, V162, pA1163, DOI 10.1149/2.0171507jes
[3]   Lithium-Ion Conducting Electrolyte Salts for Lithium Batteries [J].
Aravindan, Vanchiappan ;
Gnanaraj, Joe ;
Madhavi, Srinivasan ;
Liu, Hua-Kun .
CHEMISTRY-A EUROPEAN JOURNAL, 2011, 17 (51) :14326-14346
[4]   In-Situ Detection of Lithium Plating Using High Precision Coulometry [J].
Burns, J. C. ;
Stevens, D. A. ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (06) :A959-A964
[5]   7Li and 19F diffusion coefficients and thermal properties of non-aqueous electrolyte solutions for rechargeable lithium batteries [J].
Capiglia, C ;
Saito, Y ;
Kageyama, H ;
Mustarelli, P ;
Iwamoto, T ;
Tabuchi, T ;
Tukamoto, H .
JOURNAL OF POWER SOURCES, 1999, 81 :859-862
[6]   Electrochemical cell studies on fluorinated natural graphite in propylene carbonate electrolyte with difluoromethyl acetate (MFA) additive for low temperature lithium battery application [J].
Chandrasekaran, R. ;
Koh, M. ;
Ozhawa, Y. ;
Aoyoma, H. ;
Nakajima, T. .
JOURNAL OF CHEMICAL SCIENCES, 2009, 121 (03) :339-346
[7]   Nitrile-assistant eutectic electrolytes for cryogenic operation of lithium ion batteries at fast charges and discharges [J].
Cho, Yoon-Gyo ;
Kim, Young-Soo ;
Sung, Dong-Gil ;
Seo, Myung-Su ;
Song, Hyun-Kon .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1737-1743
[8]   Optimized Temperature Effect of Li-Ion Diffusion with Layer Distance in Li(NixMnyCoz)O2 Cathode Materials for High Performance Li-Ion Battery [J].
Cui, Suihan ;
Wei, Yi ;
Liu, Tongchao ;
Deng, Wenjun ;
Hu, Zongxiang ;
Su, Yantao ;
Li, Hao ;
Li, Maofan ;
Guo, Hua ;
Duan, Yandong ;
Wang, Weidong ;
Rao, Mumin ;
Zheng, Jiaxin ;
Wang, Xinwei ;
Pan, Feng .
ADVANCED ENERGY MATERIALS, 2016, 6 (04)
[9]   Enabling fast charging of high energy density Li-ion cells with high lithium ion transport electrolytes [J].
Du, Zhijia ;
Wood, David L., III ;
Belharouak, Ilias .
ELECTROCHEMISTRY COMMUNICATIONS, 2019, 103 :109-113
[10]   CONDUCTIVITY OF ELECTROLYTES FOR RECHARGEABLE LITHIUM BATTERIES [J].
DUDLEY, JT ;
WILKINSON, DP ;
THOMAS, G ;
LEVAE, R ;
WOO, S ;
BLOM, H ;
HORVATH, C ;
JUZKOW, MW ;
DENIS, B ;
JURIC, P ;
AGHAKIAN, P ;
DAHN, JR .
JOURNAL OF POWER SOURCES, 1991, 35 (01) :59-82