What is a data model? An anatomy of data analysis in high energy physics

被引:9
|
作者
Antoniou, Antonis [1 ]
机构
[1] Univ Bristol, Dept Philosophy, Bristol BS6 6JL, Avon, England
基金
英国艺术与人文研究理事会;
关键词
Data; Models; Data models; Lepton Flavour Universality tests; LHC; Philosophy of Science in Practice; THEORY-LADEN OBSERVATION; EXPERIMENTATION; ACQUISITION; SIMULATION; COLLIDER; DETECTOR;
D O I
10.1007/s13194-021-00412-2
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
Many decades ago Patrick Suppes argued rather convincingly that theoretical hypotheses are not confronted with the direct, raw results of an experiment, rather, they are typically compared with models of data. What exactly is a data model however? And how do the interactions of particles at the subatomic scale give rise to the huge volumes of data that are then moulded into a polished data model? The aim of this paper is to answer these questions by presenting a detailed case study of the construction of data models at the LHCb for testing Lepton Flavour Universality in rare decays of B-mesons. The close examination of the scientific practice at the LHCb leads to the following four main conclusions: (i) raw data in their pure form are practically useless for the comparison of experimental results with theory, and processed data are in some cases epistemically more reliable, (ii) real and simulated data are involved in the co-production of the final data model and cannot be easily distinguished, (iii) theory-ladenness emerges at three different levels depending on the scope and the purpose for which background theory guides the overall experimental process and (iv) the overall process of acquiring and analysing data in high energy physics is too complicated to be fully captured by a generic methodological description of the experimental practice.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] What is a data model?An anatomy of data analysis in high energy physics
    Antonis Antoniou
    European Journal for Philosophy of Science, 2021, 11
  • [2] Data analysis in high energy physics, weird or wonderful
    Mount, Richard P.
    ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XVII, 2008, 394 : 57 - 66
  • [3] Using MapReduce for High Energy Physics Data Analysis
    Glaser, Fabian
    Neukirchen, Helmut
    Rings, Thomas
    Grabowski, Jens
    2013 IEEE 16TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE 2013), 2013, : 1271 - 1278
  • [4] Using Hadoop for High Energy Physics Data Analysis
    Huang, Qiulan
    Wei, Zhanchen
    Sun, Gongxing
    Cheng, Yaodong
    Cheng, Zhenjing
    Hu, Qingbao
    BIG SCIENTIFIC DATA MANAGEMENT, 2019, 11473 : 146 - 153
  • [5] Quasi interactive high throughput analysis of high energy physics data (*)
    Bartolini, M.
    Cagnotta, A.
    Diotalevi, T.
    D'onofrio, A.
    Gravili, F. giuseppe
    Simone, F. maria
    Mastrandrea, P.
    Anwar, M. numan
    Sabella, G.
    Spisso, B.
    Tarasio, A.
    Tedeschi, T.
    NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2025, 48 (03):
  • [6] Data preservation in high energy physics
    T. Basaglia
    M. Bellis
    J. Blomer
    J. Boyd
    C. Bozzi
    D. Britzger
    S. Campana
    C. Cartaro
    G. Chen
    B. Couturier
    G. David
    C. Diaconu
    A. Dobrin
    D. Duellmann
    M. Ebert
    P. Elmer
    J. Fernandes
    L. Fields
    P. Fokianos
    G. Ganis
    A. Geiser
    M. Gheata
    J. B. Gonzalez Lopez
    T. Hara
    L. Heinrich
    M. Hildreth
    K. Herner
    B. Jayatilaka
    M. Kado
    O. Keeble
    A. Kohls
    K. Naim
    C. Lange
    K. Lassila-Perini
    S. Levonian
    M. Maggi
    Z. Marshall
    P. Mato Vila
    A. Mečionis
    A. Morris
    S. Piano
    M. Potekhin
    M. Schröder
    U. Schwickerath
    E. Sexton-Kennedy
    T. Šimko
    T. Smith
    D. South
    A. Verbytskyi
    M. Vidal
    The European Physical Journal C, 83
  • [7] Data acquisition in high energy physics
    Gutleber, J.
    Moser, R.
    Orsini, L.
    ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XVII, 2008, 394 : 47 - 56
  • [8] Data Preservation in High Energy Physics
    South, David M.
    INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2010), 2011, 331
  • [9] Data preservation in High Energy Physics
    Kogler, R.
    South, D. M.
    Steder, M.
    14TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT 2011), 2012, 368
  • [10] Data preservation in high energy physics
    Basaglia, T.
    Bellis, M.
    Blomer, J.
    Boyd, J.
    Bozzi, C.
    Britzger, D.
    Campana, S.
    Cartaro, C.
    Chen, G.
    Couturier, B.
    David, G.
    Diaconu, C.
    Dobrin, A.
    Duellmann, D.
    Ebert, M.
    Elmer, P.
    Fernandes, J.
    Fields, L.
    Fokianos, P.
    Ganis, G.
    Geiser, A.
    Gheata, M.
    Lopez, J. B. Gonzalez
    Hara, T.
    Heinrich, L.
    Hildreth, M.
    Herner, K.
    Jayatilaka, B.
    Kado, M.
    Keeble, O.
    Kohls, A.
    Naim, K.
    Lange, C.
    Lassila-Perini, K.
    Levonian, S.
    Maggi, M.
    Marshall, Z.
    Vila, P. Mato
    Mecionis, A.
    Morris, A.
    Piano, S.
    Potekhin, M.
    Schroder, M.
    Schwickerath, U.
    Sexton-Kennedy, E.
    Simko, T.
    Smith, T.
    South, D.
    Verbytskyi, A.
    Vidal, M.
    EUROPEAN PHYSICAL JOURNAL C, 2023, 83 (09):