An Evaluation Method of SAR Images Based on Kullback-Leiber Divergence

被引:1
作者
Hu, LiPing [1 ]
Wang, Chao [1 ]
机构
[1] Sci & Technol Electromagnet Scattering Lab, Beijing, Peoples R China
来源
IEEE 12TH INT CONF UBIQUITOUS INTELLIGENCE & COMP/IEEE 12TH INT CONF ADV & TRUSTED COMP/IEEE 15TH INT CONF SCALABLE COMP & COMMUN/IEEE INT CONF CLOUD & BIG DATA COMP/IEEE INT CONF INTERNET PEOPLE AND ASSOCIATED SYMPOSIA/WORKSHOPS | 2015年
关键词
quantitiveevalution; Kullback-Leiber (KL); KK distribution; moving and stationary target recognition (MSTAR); synthetic aperture radar (SAR); ATR;
D O I
10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.293
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A quantitative evaluation method of synthetic aperture radar (SAR) simulation image based on the KK distribution and the Kullback-Leiber (KL) divergence is introduced in order to evaluate the validity of SAR templates by theoretical modeling. Firstly, the histogram of SAR image is modeled with the KK distribution. And then, the symmetric KL distance between two probability distributions is defined. By computing the KL distances between the simulated SAR images and the moving and stationary target recognition (MSTAR) SAR images of three typical ground vehicles (BMP2, BTR70, and T72), we conclude that the evaluation method based on the Kullback-Leiber divergence is effective.
引用
收藏
页码:1611 / 1616
页数:6
相关论文
共 13 条
[1]   MSE template size analysis for MSTAR data [J].
Bryant, M ;
Worrell, S ;
Dixon, A .
ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY V, 1998, 3370 :396-405
[2]  
DONG C. H., 2012, CHINESE J RADARS, V1, P436
[3]  
Dong Y., 2006, Distribution of X-Band High Resolution and High Grazing Angle Sea Clutter
[4]  
Gao Yan-zhao, 2013, Systems Engineering and Electronics, V35, P2495, DOI 10.3969/j.issn.1001-506X.2013.12.09
[5]  
[关鑫璞 GUAN Xinpu], 2007, [电波科学学报, Chinese Journal of Radio Science], V22, P463
[6]  
Ji K., 2010, Radar Sci. Technol., V8, P223
[7]  
Jordi I, 2007, GEOSCIENCE REMOTE SE, V45, P1432
[8]   Analysis of multiplicative speckle models for template-based SAR ATR [J].
Kaplan, LM .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2001, 37 (04) :1424-1432
[9]   Signature prediction for model-based automatic target recognition [J].
Keydel, ER ;
Lee, SW .
ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY III, 1996, 2757 :306-317
[10]  
Li R., 2010, Radar Sci. and Technol., V22, P395