Using DeepGCN to identify the autism spectrum disorder from multi-site resting-state data

被引:76
作者
Cao, Menglin [1 ,2 ,3 ]
Yang, Ming [1 ,2 ,3 ]
Qin, Chi [1 ,2 ,3 ]
Zhu, Xiaofei [4 ]
Chen, Yanni [5 ]
Wang, Jue [1 ,2 ,3 ]
Liu, Tian [1 ,2 ,3 ]
机构
[1] Xi An Jiao Tong Univ, Key Lab Biomed Informat Engn, Inst Hlth & Rehabil Sci, Sch Life Sci & Technol,Minist Educ, Xian 710049, Peoples R China
[2] Natl Engn Res Ctr Healthcare Devices, Guangzhou 510500, Peoples R China
[3] Minist Civil Affairs, Key Lab Neuroinformat & Rehabil Engn, Xian 710049, Peoples R China
[4] Fourth Mil Med Univ, Tangdu Hosp, Dept Radiol, Xian 710038, Peoples R China
[5] Xian Childrens Hosp, Xian 710043, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Autism spectrum disorder (ASD); Functional MRI; Scale information; Classification; Deep graph convolutional neural network (DeepGCN); FUNCTIONAL CONNECTIVITY; DISEASE; AGE; BIOMARKERS;
D O I
10.1016/j.bspc.2021.103015
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
It is challenging to discriminate Autism spectrum disorder (ASD) from a highly heterogeneous database, because there is a great deal of uncontrollable variability in the data from different sites. The enormous success of graph convolutional neural networks (GCNs) in disease prediction based on multi-site data has sparked recent interest in applying GCNs in diagnosis of ASD. However, the current research results are all based on shallow GCNs. The main objective of this research was to improve the classification results by using DeepGCN. We constructed a deep ASD diagnosing framework based on 16-layer GCN. And ResNet units and DropEdge strategy were integrated into the DeepGCN model to avoid the vanishing gradient, over-fitting and over-smoothing. We combined the scale information with neuroimaging to form a graph structure based on the ABIDE dataset I, which contains a total of 871 subjects from 17 sites. We compared the DeepGCN results with well-established models based on the same subjects. The mean accuracy of our classification algorithm is 73.7% for classifying ASD versus normal controls (GCN: 70.4%, SVM-l2: 66.8%, Metric Learning: 62.9%). We introduce a new perspective for studying the biological markers of early diagnosis of ASD based on multi-site and multi-modality data. Meanwhile, it can be easily applied to various mental illnesses.
引用
收藏
页数:10
相关论文
共 50 条
[1]   Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example [J].
Abraham, Alexandre ;
Milham, Michael P. ;
Di Martino, Adriana ;
Craddock, R. Cameron ;
Samaras, Dimitris ;
Thirion, Bertrand ;
Varoquaux, Gael .
NEUROIMAGE, 2017, 147 :736-745
[2]   The ADHD-200 Consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience [J].
Acuna, Carlos .
FRONTIERS IN SYSTEMS NEUROSCIENCE, 2012, 6
[3]  
American Psychiatric Association, 2013, Diagnostic and statistical manual of mental disorders, DOI DOI 10.1176/APPI.BOOKS.9780890425596
[4]   Functional connectivity magnetic resonance imaging classification of autism [J].
Anderson, Jeffrey S. ;
Nielsen, Jared A. ;
Froehlich, Alyson L. ;
DuBray, Molly B. ;
Druzgal, T. Jason ;
Cariello, Annahir N. ;
Cooperrider, Jason R. ;
Zielinski, Brandon A. ;
Ravichandran, Caitlin ;
Fletcher, P. Thomas ;
Alexander, Andrew L. ;
Bigler, Erin D. ;
Lange, Nicholas ;
Lainhart, Janet E. .
BRAIN, 2011, 134 :3739-3751
[5]   Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients [J].
Assaf, Michal ;
Jagannathan, Kanchana ;
Calhoun, Vince D. ;
Miller, Laura ;
Stevens, Michael C. ;
Sahl, Robert ;
O'Boyle, Jacqueline G. ;
Schultz, Robert T. ;
Pearlson, Godfrey D. .
NEUROIMAGE, 2010, 53 (01) :247-256
[6]  
Baldassarre F., 2019, arXiv preprint arXiv:1905.13686
[7]  
Barelds D, 2015, GRONINGER INTELLIGEN
[8]   Disease State Prediction From Resting State Functional Connectivity [J].
Craddock, R. Cameron ;
Holtzheimer, Paul E., III ;
Hu, Xiaoping P. ;
Mayberg, Helen S. .
MAGNETIC RESONANCE IN MEDICINE, 2009, 62 (06) :1619-1628
[9]  
Defferrard M, 2016, ADV NEUR IN, V29
[10]   The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism [J].
Di Martino, A. ;
Yan, C-G ;
Li, Q. ;
Denio, E. ;
Castellanos, F. X. ;
Alaerts, K. ;
Anderson, J. S. ;
Assaf, M. ;
Bookheimer, S. Y. ;
Dapretto, M. ;
Deen, B. ;
Delmonte, S. ;
Dinstein, I. ;
Ertl-Wagner, B. ;
Fair, D. A. ;
Gallagher, L. ;
Kennedy, D. P. ;
Keown, C. L. ;
Keysers, C. ;
Lainhart, J. E. ;
Lord, C. ;
Luna, B. ;
Menon, V. ;
Minshew, N. J. ;
Monk, C. S. ;
Mueller, S. ;
Mueller, R. A. ;
Nebel, M. B. ;
Nigg, J. T. ;
O'Hearn, K. ;
Pelphrey, K. A. ;
Peltier, S. J. ;
Rudie, J. D. ;
Sunaert, S. ;
Thioux, M. ;
Tyszka, J. M. ;
Uddin, L. Q. ;
Verhoeven, J. S. ;
Wenderoth, N. ;
Wiggins, J. L. ;
Mostofsky, S. H. ;
Milham, M. P. .
MOLECULAR PSYCHIATRY, 2014, 19 (06) :659-667