Spontaneous edge-defect formation and defect-induced conductance suppression in graphene nanoribbons

被引:43
作者
Li, Jia [1 ]
Li, Zuanyi [1 ]
Zhou, Gang [1 ]
Liu, Zhirong [3 ]
Wu, Jian [1 ]
Gu, Bing-Lin [1 ]
Ihm, Jisoon [2 ]
Duan, Wenhui [1 ]
机构
[1] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[2] Seoul Natl Univ, Dept Phys & Astron, Seoul 151747, South Korea
[3] Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
来源
PHYSICAL REVIEW B | 2010年 / 82卷 / 11期
基金
中国国家自然科学基金;
关键词
ELECTRONIC-PROPERTIES; CARBON NANOTUBES; ENERGY; STATE; STABILITY; RIBBONS;
D O I
10.1103/PhysRevB.82.115410
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a first-principles study of the migration and recombination of edge defects (carbon adatom and/or vacancy) and their influence on electrical conductance in zigzag graphene nanoribbons (ZGNRs). It is found that at room temperature, the adatom is quite mobile while the vacancy is almost immobile along the edge of ZGNRs. The recombination of an adatom-vacancy pair leads to a pentagon-heptagon ring defect structure having a lower energy than the perfect edge, implying that such an edge defect can be formed spontaneously. This edge defect can suppresses the conductance of ZGNRs drastically, which provides some useful hints for understanding the observed semiconducting behavior of the fabricated narrow GNRs.
引用
收藏
页数:5
相关论文
共 49 条
[1]   Irradiation effects in carbon nanostructures [J].
Banhart, F .
REPORTS ON PROGRESS IN PHYSICS, 1999, 62 (08) :1181-1221
[2]   Electronic structure and stability of semiconducting graphene nanoribbons [J].
Barone, Veronica ;
Hod, Oded ;
Scuseria, Gustavo E. .
NANO LETTERS, 2006, 6 (12) :2748-2754
[3]   Effect of edge roughness on electronic transport in graphene nanoribbon channel metal-oxide-semiconductor field-effect transistors [J].
Basu, D. ;
Gilbert, M. J. ;
Register, L. F. ;
Banerjee, S. K. ;
MacDonald, A. H. .
APPLIED PHYSICS LETTERS, 2008, 92 (04)
[4]   Density-functional method for nonequilibrium electron transport -: art. no. 165401 [J].
Brandbyge, M ;
Mozos, JL ;
Ordejón, P ;
Taylor, J ;
Stokbro, K .
PHYSICAL REVIEW B, 2002, 65 (16) :1654011-16540117
[5]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[6]   GROUND-STATE OF THE ELECTRON-GAS BY A STOCHASTIC METHOD [J].
CEPERLEY, DM ;
ALDER, BJ .
PHYSICAL REVIEW LETTERS, 1980, 45 (07) :566-569
[7]   Graphene nano-ribbon electronics [J].
Chen, Zhihong ;
Lin, Yu-Ming ;
Rooks, Michael J. ;
Avouris, Phaedon .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02) :228-232
[8]   In situ band gap engineering of carbon nanotubes [J].
Crespi, VH ;
Cohen, ML ;
Rubio, A .
PHYSICAL REVIEW LETTERS, 1997, 79 (11) :2093-2096
[9]   Crystallographic etching of few-layer graphene [J].
Datta, Sujit S. ;
Strachan, Douglas R. ;
Khamis, Samuel M. ;
Johnson, A. T. Charlie .
NANO LETTERS, 2008, 8 (07) :1912-1915
[10]   Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons [J].
Evaldsson, M. ;
Zozoulenko, I. V. ;
Xu, Hengyi ;
Heinzel, T. .
PHYSICAL REVIEW B, 2008, 78 (16)