Active polarization control with a parity-time-symmetric plasmonic resonator

被引:14
作者
Baum, Brian [1 ]
Lawrence, Mark [1 ]
Barton, David, III [1 ]
Dionne, Jennifer [1 ]
Alaeian, Hadiseh [2 ,3 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[3] Univ Stuttgart, Phys Inst 5, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
基金
美国国家科学基金会;
关键词
OPTICAL METASURFACES; BROAD-BAND; METAMATERIALS; TRANSMISSION; TUNABILITY; DEVICES; SURFACE; RANGE;
D O I
10.1103/PhysRevB.98.165418
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Control of the polarization state of light is essential for many technologies, but is often limited by weak light-matter interactions that necessitate long device path lengths or significantly reduce the signal intensity. Here, we investigate a nanoscale plasmonic aperture capable of modifying the polarization state of far-field transmitted light without loss in the probe signal. The aperture is a coaxial resonator consisting of a dielectric ring embedded within a metallic film; parity-time (PT) -symmetric inclusions of loss and gain within the dielectric ring enable polarization control. Since the coaxial aperture enables near-thresholdless PT symmetry breaking, polarization control is achieved with realistic levels of loss and gain. Exploiting this sensitivity, we show that the aperture can function as a tunable waveplate, with the transmitted ellipticity of circularly polarized incident light changing continuously with the dissipation coefficient from pi/2 to 0 (i.e., linear polarization). Rotation of linearly polarized light with unity efficiency is also possible, with a continuously tunable degree of rotation. This compact, low-threshold, and reconfigurable polarizer may enable next-generation, high-efficiency displays, routers, modulators, and metasurfaces.
引用
收藏
页数:6
相关论文
共 63 条
[1]   Towards nanoscale multiplexing with parity-time-symmetric plasmonic coaxial waveguides [J].
Alaeian, Hadiseh ;
Baum, Brian ;
Jankovic, Vladan ;
Lawrence, Mark ;
Dionne, Jennifer A. .
PHYSICAL REVIEW B, 2016, 93 (20)
[2]   Parity-time-symmetric plasmonic metamaterials [J].
Alaeian, Hadiseh ;
Dionne, Jennifer A. .
PHYSICAL REVIEW A, 2014, 89 (03)
[3]   Non-Hermitian nanophotonic and plasmonic waveguides [J].
Alaeian, Hadiseh ;
Dionne, Jennifer A. .
PHYSICAL REVIEW B, 2014, 89 (07)
[4]   Robust wireless power transfer using a nonlinear parity-time-symmetric circuit [J].
Assawaworrarit, Sid ;
Yu, Xiaofang ;
Fan, Shanhui .
NATURE, 2017, 546 (7658) :387-+
[5]   Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes [J].
Baida, F. I. ;
Belkhir, A. ;
Van Labeke, D. ;
Lamrous, O. .
PHYSICAL REVIEW B, 2006, 74 (20)
[6]   Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays [J].
Baida, FI ;
Van Labeke, D .
PHYSICAL REVIEW B, 2003, 67 (15)
[7]   Broadband and wide-angle nonreciprocity with a non-Hermitian metamaterial [J].
Barton, David R., III ;
Alaeian, Hadiseh ;
Lawrence, Mark ;
Dionne, Jennifer .
PHYSICAL REVIEW B, 2018, 97 (04)
[8]   A parity-time symmetric coherent plasmonic absorber-amplifier [J].
Baum, Brian ;
Alaeian, Hadiseh ;
Dionne, Jennifer .
JOURNAL OF APPLIED PHYSICS, 2015, 117 (06)
[9]   Implementation of PT symmetric devices using plasmonics: principle and applications [J].
Benisty, Henri ;
Degiron, Aloyse ;
Lupu, Anatole ;
De Lustrac, Andre ;
Chenais, Sebastien ;
Forget, Sebastien ;
Besbes, Mondher ;
Barbillon, Gregory ;
Bruyant, Aurelien ;
Blaize, Sylvain ;
Lerondel, Gilles .
OPTICS EXPRESS, 2011, 19 (19) :18004-18019
[10]   Surface plasmon-polariton amplifiers and lasers [J].
Berini, Pierre ;
De Leon, Israel .
NATURE PHOTONICS, 2012, 6 (01) :16-24