STRUCTURE OF FINITE GROUPS WITH S-QUASINORMAL THIRD MAXIMAL SUBGROUPS

被引:3
|
作者
Lutsenko, Yu. V. [1 ]
Skiba, A. N. [1 ]
机构
[1] Gomel Univ, Gomel, BELARUS
关键词
Normal Subgroup; Finite Group; Cyclic Group; Maximal Subgroup; Nilpotent Group;
D O I
10.1007/s11253-010-0322-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study finite groups whose 3-maximal subgroups are permutable with all Sylow subgroups.
引用
收藏
页码:1915 / 1922
页数:8
相关论文
共 50 条
  • [31] Influence of indices of the maximal subgroups of the finite simple groups on the structure of a finite group
    Li, XH
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (01) : 33 - 64
  • [32] On the Normality of Fω-Abnormal Maximal Subgroups of Finite Groups
    Sorokina, M. M.
    Maksakov, S. P.
    MATHEMATICAL NOTES, 2020, 108 (3-4) : 409 - 418
  • [33] Bounds on the Number of Maximal Subgroups of Finite Groups: Applications
    Ballester-Bolinches, Adolfo
    Esteban-Romero, Ramon
    Jimenez-Seral, Paz
    MATHEMATICS, 2022, 10 (07)
  • [34] Finite groups with four conjugacy classes of maximal subgroups
    Belonogov, Vyacheslav A.
    Zenkov, Viktor I.
    Kondrat'ev, Anatoly S.
    EUROPEAN JOURNAL OF MATHEMATICS, 2023, 9 (04)
  • [35] Finite Groups with Three Nonconjugate Maximal Formational Subgroups
    Vasil'ev, A. F.
    Murashka, V., I
    Furs, A. K.
    MATHEMATICAL NOTES, 2022, 111 (3-4) : 356 - 363
  • [36] THE NUMBER OF MAXIMAL SUBGROUPS AND PROBABILISTIC GENERATION OF FINITE GROUPS
    Ballester-Bolinches, Adolfo
    Esteban-Romero, Ramon
    Jimenez-Seral, Paz
    Meng, Hangyang
    INTERNATIONAL JOURNAL OF GROUP THEORY, 2020, 9 (01) : 31 - 42
  • [37] Finite groups with four conjugacy classes of maximal subgroups
    Vyacheslav A. Belonogov
    Viktor I. Zenkov
    Anatoly S. Kondrat’ev
    European Journal of Mathematics, 2023, 9
  • [38] Finite Groups with Three Nonconjugate Maximal Formational Subgroups
    A. F. Vasil’ev
    V. I. Murashka
    A. K. Furs
    Mathematical Notes, 2022, 111 : 356 - 363
  • [39] Finite groups with permuted strongly generalized maximal subgroups
    Gorbatova, Yulia, V
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2022, (80): : 26 - 38
  • [40] FINITE GROUPS WHOSE MAXIMAL SUBGROUPS HAVE ONLY SOLUBLE PROPER SUBGROUPS
    Lytkina, D. V.
    Zhurtov, A. Kh.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2022, 19 (01): : 237 - 240