The role of histone acetylation in SMN gene expression

被引:122
作者
Kernochan, LE [1 ]
Russo, ML [1 ]
Woodling, NS [1 ]
Huynh, TN [1 ]
Avila, AM [1 ]
Fischbeck, KH [1 ]
Sumner, CJ [1 ]
机构
[1] NINDS, Neurogenet Branch, NIH, Bethesda, MD 20892 USA
关键词
D O I
10.1093/hmg/ddi130
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Increasing survival motor neuron 2 (SMN2) gene expression may be an effective strategy for the treatment of spinal muscular atrophy (SMA). Histone deacetylase (HDAC) inhibitors have been shown to increase SMN transcript and protein levels, but the specific role of histone acetylation in regulating SMN gene expression has not been explored. Using chromatin immunopreciptation, we investigated the levels of acetylated H3 and H4 histones and HDACs associated with different regions of the human and mouse SMN genes in both cultured cells and tissues. We show that the SMN gene has a reproducible pattern of histone acetylation that is largely conserved among different tissues and species. A limited region of the promoter surrounding the transcriptional start site has relatively high levels of histone acetylation, whereas regions further upstream or downstream have lower levels. After HDAC inhibitor treatment, acetylated histone levels increased, particularly at upstream regions, correlating with a 2-fold increase in promoter activity. During development in mouse tissues, histone acetylation levels decreased and associated HDAC2 levels increased at the region closest to the transcriptional start site, correlating with a 40-60% decrease in SMN transcript and protein levels. These data indicate that histone acetylation modulates SMN gene expression and that pharmacological manipulation of this epigenetic determinant is feasible. HDAC2, in particular, may be a future therapeutic target for SMA.
引用
收藏
页码:1171 / 1182
页数:12
相关论文
共 44 条
  • [1] Allfrey V G, 1966, Proc Can Cancer Conf, V6, P313
  • [2] Phenylbutyrate increases SMN expression in vitro:: relevance for treatment of spinal muscular atrophy
    Andreassi, C
    Angelozzi, C
    Tiziano, FD
    Vitali, T
    De Vincenzi, E
    Boninsegna, A
    Villanova, M
    Bertini, E
    Pini, A
    Neri, G
    Brahe, C
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 2004, 12 (01) : 59 - 65
  • [3] Applied Biosystems, 1997, APPL BIOS US B, V2
  • [4] Expression of the SMN gene, the spinal muscular atrophy determining gene, in the mammalian central nervous system
    Battaglia, G
    Princivalle, A
    Forti, F
    Lizier, C
    Zeviani, M
    [J]. HUMAN MOLECULAR GENETICS, 1997, 6 (11) : 1961 - 1971
  • [5] Survival motor neuron SMN1 and SMN2 gene promoters: identical sequences and differential expression in neurons and non-neuronal cells
    Boda, B
    Mas, C
    Giudicelli, C
    Nepote, V
    Guimiot, F
    Levacher, B
    Zvara, A
    Santha, M
    LeGall, I
    Simonneau, M
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 2004, 12 (09) : 729 - 737
  • [6] Braveman Melissa W., 2004, V277, P261
  • [7] Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy
    Brichta, L
    Hofmann, Y
    Hahnen, E
    Siebzehnrubl, FA
    Raschke, H
    Blumcke, I
    Eyupoglu, IY
    Wirth, B
    [J]. HUMAN MOLECULAR GENETICS, 2003, 12 (19) : 2481 - 2489
  • [8] The distribution of SMN protein complex in human fetal tissues and its alteration in spinal muscular atrophy
    Burlet, P
    Huber, C
    Bertrandy, S
    Ludosky, MA
    Zwaenepoel, I
    Clermont, O
    Roume, J
    Delezoide, AL
    Cartaud, J
    Munnich, A
    Lefebvre, S
    [J]. HUMAN MOLECULAR GENETICS, 1998, 7 (12) : 1927 - 1933
  • [9] NEUROBLASTOMA X SPINAL-CORD (NSC) HYBRID CELL-LINES RESEMBLE DEVELOPING MOTOR NEURONS
    CASHMAN, NR
    DURHAM, HD
    BLUSZTAJAN, JK
    ODA, K
    TABIRA, T
    SHAW, IT
    DAHROUGE, S
    ANTEL, JP
    [J]. DEVELOPMENTAL DYNAMICS, 1992, 194 (03) : 209 - 221
  • [10] Treatment of spinal muscular atrophy by sodium butyrate
    Chang, JG
    Hsieh-Li, HM
    Jong, YJ
    Wang, NM
    Tsai, CH
    Li, H
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (17) : 9808 - 9813