共 50 条
ERROR ESTIMATES OF THE FINITE ELEMENT METHOD WITH WEIGHTED BASIS FUNCTIONS FOR A SINGULARLY PERTURBED CONVECTION-DIFFUSION EQUATION
被引:0
|作者:
Li, Xianggui
[1
]
Yu, Xijun
[2
]
Chen, Guangnan
[2
]
机构:
[1] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100101, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Convergence;
Singular perturbation;
Convection-diffusion equation;
Finite element method;
ADAPTED MESHES;
D O I:
10.4208/jcm.1009-m3113
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we establish a convergence theory for a finite element method with weighted basis functions for solving singularly perturbed convection-diffusion equations. The stability of this finite element method is proved and an upper bound O(h vertical bar ln epsilon vertical bar(3/2)) for errors in the approximate solutions in the energy norm is obtained on the triangular Bakhvalov-type mesh. Numerical results are presented to verify the stability and the convergent rate of this finite element method.
引用
收藏
页码:227 / 242
页数:16
相关论文