ERROR ESTIMATES OF THE FINITE ELEMENT METHOD WITH WEIGHTED BASIS FUNCTIONS FOR A SINGULARLY PERTURBED CONVECTION-DIFFUSION EQUATION

被引:0
|
作者
Li, Xianggui [1 ]
Yu, Xijun [2 ]
Chen, Guangnan [2 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100101, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
基金
中国国家自然科学基金;
关键词
Convergence; Singular perturbation; Convection-diffusion equation; Finite element method; ADAPTED MESHES;
D O I
10.4208/jcm.1009-m3113
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish a convergence theory for a finite element method with weighted basis functions for solving singularly perturbed convection-diffusion equations. The stability of this finite element method is proved and an upper bound O(h vertical bar ln epsilon vertical bar(3/2)) for errors in the approximate solutions in the energy norm is obtained on the triangular Bakhvalov-type mesh. Numerical results are presented to verify the stability and the convergent rate of this finite element method.
引用
收藏
页码:227 / 242
页数:16
相关论文
共 50 条