Improving CNN-RNN Hybrid Networks for Handwriting Recognition

被引:85
作者
Dutta, Kartik [1 ]
Krishnan, Praveen [1 ]
Mathew, Minesh [1 ]
Jawahar, C. V. [1 ]
机构
[1] IIIT Hyderabad, CVIT, Hyderabad, Telangana, India
来源
PROCEEDINGS 2018 16TH INTERNATIONAL CONFERENCE ON FRONTIERS IN HANDWRITING RECOGNITION (ICFHR) | 2018年
关键词
Handwriting recognition; CNN-RNN network; Data augmentation; Image pre-processing;
D O I
10.1109/ICFHR-2018.2018.00023
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The success of deep learning based models have centered around recent architectures and the availability of large scale annotated data. In this work, we explore these two factors systematically for improving handwritten recognition for scanned off-line document images. We propose a modified CNN-RNN hybrid architecture with a major focus on effective training using: (i) efficient initialization of network using synthetic data for pre-training, (ii) image normalization for slant correction and (iii) domain specific data transformation and distortion for learning important invariances. We perform a detailed ablation study to analyze the contribution of individual modules and present state of art results for the task of unconstrained line and word recognition on popular datasets such as IAM, RIMES and GW.
引用
收藏
页码:80 / 85
页数:6
相关论文
共 36 条
  • [11] Chen Z., 2017, ICDAR
  • [12] Offline Handwriting Recognition on Devanagari using a new Benchmark Dataset
    Dutta, Kartik
    Krishnan, Praveen
    Mathew, Minesh
    Jawahar, C. V.
    [J]. 2018 13TH IAPR INTERNATIONAL WORKSHOP ON DOCUMENT ANALYSIS SYSTEMS (DAS), 2018, : 25 - 30
  • [13] Fischer A., 2012, PR
  • [14] Graves A., 2006, PROC INT C MACH LEAR, P369, DOI DOI 10.1145/1143844.1143891
  • [15] A Novel Connectionist System for Unconstrained Handwriting Recognition
    Graves, Alex
    Liwicki, Marcus
    Fernandez, Santiago
    Bertolami, Roman
    Bunke, Horst
    Schmidhuber, Juergen
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (05) : 855 - 868
  • [16] Grosicki E., 2011, ICDAR
  • [17] HE KM, 2016, PROC CVPR IEEE, P770, DOI [10.1109/CVPR.2016.90, DOI 10.1109/CVPR.2016.90]
  • [18] Jaderberg M., 2015, Advances in neural information processing systems, V28, P2017
  • [19] Word Spotting and Recognition using Deep Embedding
    Krishnan, Praveen
    Dutta, Kartik
    Jawahar, C. V.
    [J]. 2018 13TH IAPR INTERNATIONAL WORKSHOP ON DOCUMENT ANALYSIS SYSTEMS (DAS), 2018, : 1 - 6
  • [20] ImageNet Classification with Deep Convolutional Neural Networks
    Krizhevsky, Alex
    Sutskever, Ilya
    Hinton, Geoffrey E.
    [J]. COMMUNICATIONS OF THE ACM, 2017, 60 (06) : 84 - 90