Superconvergence of the Crouzeix-Raviart element for elliptic equation

被引:2
作者
Zhang, Yidan [1 ,2 ]
Huang, Yunqing [1 ,2 ]
Yi, Nianyu [1 ,2 ]
机构
[1] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
Crouzeix-Raviart element; Raviart-Thomas element; Nonconforming; Superconvergence; Postprocessing; DISCONTINUOUS GALERKIN METHOD; MIXED FINITE-ELEMENT;
D O I
10.1007/s10444-019-09714-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a superconvergence result of the Crouzeix-Raviart element method is derived for the second-order elliptic equation on the uniform triangular meshes, in which any two adjacent triangles form a parallelogram. A local weighted averaging post-processing algorithm for the numerical stress is presented. Based on the equivalence between the Crouzeix-Raviart element method and the lowest order Raviart-Thomas element method, we prove that the error between the exact stress and the postprocessed numerical stress is of order h(3/2). Two numerical examples are presented to confirm the theoretical result.
引用
收藏
页码:2833 / 2844
页数:12
相关论文
共 50 条
[31]   A preconditioner for the FETI-DP method for mortar-type Crouzeix-Raviart element discretization [J].
Chunmei Wang .
Applications of Mathematics, 2014, 59 :653-672
[32]   A preconditioner for the FETI-DP method for mortar-type Crouzeix-Raviart element discretization [J].
Wang, Chunmei .
APPLICATIONS OF MATHEMATICS, 2014, 59 (06) :653-672
[33]   A family of Crouzeix-Raviart finite elements in 3D [J].
Ciarlet, Patrick, Jr. ;
Dunkl, Charles F. ;
Sauter, Stefan A. .
ANALYSIS AND APPLICATIONS, 2018, 16 (05) :649-691
[34]   ANISOTROPIC CROUZEIX-RAVIART TYPE NONCONFORMING FINITE ELEMENT METHODS TO VARIATIONAL INEQUALITY PROBLEM WITH DISPLACEMENT OBSTACLE [J].
Shi, Dongyang ;
Wang, Caixia ;
Tang, Qili .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2015, 33 (01) :86-99
[35]   A nonconforming finite element method for the Stokes equations using the Crouzeix-Raviart element for the velocity and the standard linear element for the pressure [J].
Lamichhane, Bishnu P. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2014, 74 (03) :222-228
[36]   Convergence analysis of an upwind finite volume element method with Crouzeix-Raviart element for non-selfadjoint and indefinite problems [J].
Hongxing Rui ;
Chunjia Bi .
Frontiers of Mathematics in China, 2008, 3 :563-579
[37]   Convergence analysis of an upwind finite volume element method with Crouzeix-Raviart element for non-selfadjoint and indefinite problems [J].
Rui, Hongxing ;
Bi, Chunjia .
FRONTIERS OF MATHEMATICS IN CHINA, 2008, 3 (04) :563-579
[38]   A posteriori bounds for linear functional outputs of Crouzeix-Raviart finite element discretizations of the incompressible Stokes problem [J].
Paraschivoiu, M ;
Patera, AT .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2000, 32 (07) :823-849
[39]   Error analysis for a Crouzeix-Raviart approximation of the p-Dirichlet problem [J].
Kaltenbach, Alex .
JOURNAL OF NUMERICAL MATHEMATICS, 2024, 32 (02) :111-138
[40]   Error analysis for a Crouzeix-Raviart approximation of the variable exponent Dirichlet problem [J].
Balci, Anna Kh ;
Kaltenbach, Alex .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, :1102-1142