Superconvergence of the Crouzeix-Raviart element for elliptic equation

被引:2
作者
Zhang, Yidan [1 ,2 ]
Huang, Yunqing [1 ,2 ]
Yi, Nianyu [1 ,2 ]
机构
[1] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
Crouzeix-Raviart element; Raviart-Thomas element; Nonconforming; Superconvergence; Postprocessing; DISCONTINUOUS GALERKIN METHOD; MIXED FINITE-ELEMENT;
D O I
10.1007/s10444-019-09714-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a superconvergence result of the Crouzeix-Raviart element method is derived for the second-order elliptic equation on the uniform triangular meshes, in which any two adjacent triangles form a parallelogram. A local weighted averaging post-processing algorithm for the numerical stress is presented. Based on the equivalence between the Crouzeix-Raviart element method and the lowest order Raviart-Thomas element method, we prove that the error between the exact stress and the postprocessed numerical stress is of order h(3/2). Two numerical examples are presented to confirm the theoretical result.
引用
收藏
页码:2833 / 2844
页数:12
相关论文
共 50 条
[21]   COMPUTATIONAL COMPARISON BETWEEN THE TAYLOR-HOOD AND THE CONFORMING CROUZEIX-RAVIART ELEMENT [J].
Krahl, Rolf ;
Baensch, Eberhard .
ALGORITMY 2005: 17TH CONFERENCE ON SCIENTIFIC COMPUTING, PROCEEDINGS, 2005, :369-379
[22]   The Lower/Upper Bound Property of the Crouzeix-Raviart Element Eigenvalues on Adaptive Meshes [J].
Yang, Yidu ;
Han, Jiayu ;
Bi, Hai ;
Yu, Yuanyuan .
JOURNAL OF SCIENTIFIC COMPUTING, 2015, 62 (01) :284-299
[23]   A partially penalty immersed Crouzeix-Raviart finite element method for interface problems [J].
Na An ;
Xijun Yu ;
Huanzhen Chen ;
Chaobao Huang ;
Zhongyan Liu .
Journal of Inequalities and Applications, 2017
[24]   Matlab Experiments on Extrapolation of The Nonconforming Crouzeix-Raviart Element for Steklov Eigenvalue Problem [J].
Bi, Hai ;
Yang, Yi-Du .
ICMS2010: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION, VOL 2: MODELLING AND SIMULATION IN ENGINEERING, 2010, :160-163
[25]   Gradient Recovery for the Crouzeix–Raviart Element [J].
Hailong Guo ;
Zhimin Zhang .
Journal of Scientific Computing, 2015, 64 :456-476
[26]   A new stabilization technique for the nonconforming Crouzeix-Raviart element applied to linear elasticity [J].
Lamichhane, Bishnu P. .
APPLIED MATHEMATICS LETTERS, 2015, 39 :35-41
[27]   Instance optimal Crouzeix-Raviart adaptive finite element methods for the Poisson and Stokes problems [J].
Kreuzer, Christian ;
Schedensack, Mira .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (02) :593-617
[28]   A stabilized Crouzeix-Raviart element method for coupling stokes and darcy-forchheimer flows [J].
Zhang, Jingyuan ;
Rui, Hongxing .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (04) :1070-1094
[30]   A QUASI-OPTIMAL CROUZEIX-RAVIART DISCRETIZATION OF THE STOKES EQUATIONS [J].
Verfuerth, Ruediger ;
Zanotti, Pietro .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (03) :1082-1099