Superconvergence of the Crouzeix-Raviart element for elliptic equation

被引:2
|
作者
Zhang, Yidan [1 ,2 ]
Huang, Yunqing [1 ,2 ]
Yi, Nianyu [1 ,2 ]
机构
[1] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
Crouzeix-Raviart element; Raviart-Thomas element; Nonconforming; Superconvergence; Postprocessing; DISCONTINUOUS GALERKIN METHOD; MIXED FINITE-ELEMENT;
D O I
10.1007/s10444-019-09714-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a superconvergence result of the Crouzeix-Raviart element method is derived for the second-order elliptic equation on the uniform triangular meshes, in which any two adjacent triangles form a parallelogram. A local weighted averaging post-processing algorithm for the numerical stress is presented. Based on the equivalence between the Crouzeix-Raviart element method and the lowest order Raviart-Thomas element method, we prove that the error between the exact stress and the postprocessed numerical stress is of order h(3/2). Two numerical examples are presented to confirm the theoretical result.
引用
收藏
页码:2833 / 2844
页数:12
相关论文
共 50 条