Unsupervised Domain Adaptation for Segmentation with Black-box Source Model

被引:5
作者
Liu, Xiaofeng [1 ,2 ]
Yoo, Chaehwa [1 ,2 ,3 ,4 ]
Xing, Fangxu [1 ,2 ]
Kuo, C-C Jay [5 ]
El Fakhri, Georges [1 ,2 ]
Kang, Je-Won [1 ,2 ,3 ,4 ]
Woo, Jonghye [1 ,2 ]
机构
[1] Massachusetts Gen Hosp, Gordon Ctr Med Imaging, Boston, MA 02114 USA
[2] Harvard Med Sch, Boston, MA 02115 USA
[3] Ewha Womans Univ, Dept Elect & Elect Engn, Seoul, South Korea
[4] Ewha Womans Univ, Grad Program Smart Factory, Seoul, South Korea
[5] Univ Southern Calif, Dept Elect & Comp Engn, Los Angeles, CA 90007 USA
来源
MEDICAL IMAGING 2022: IMAGE PROCESSING | 2022年 / 12032卷
关键词
Unsupervised domain adaptation; Black-box source model; Brain MR image segmentation;
D O I
10.1117/12.2607895
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Unsupervised domain adaptation (UDA) has been widely used to transfer knowledge from a labeled source domain to an unlabeled target domain to counter the difficulty of labeling in a new domain. The training of conventional solutions usually relies on the existence of both source and target domain data. However, privacy of the large-scale and well-labeled data in the source domain and trained model parameters can become the major concern of cross center/domain collaborations. In this work, to address this, we propose a practical solution to UDA for segmentation with a black-box segmentation model trained in the source domain only, rather than original source data or a white-box source model. Specifically, we resort to a knowledge distillation scheme with exponential mixup decay (EMD) to gradually learn target-specific representations. In addition, unsupervised entropy minimization is further applied to regularization of the target domain confidence. We evaluated our framework on the BraTS 2018 database, achieving performance on par with white-box source model adaptation approaches.
引用
收藏
页数:6
相关论文
共 50 条
[21]   Unsupervised domain adaptation for histopathology image segmentation with incomplete labels [J].
Zhou H. ;
Wang Y. ;
Zhang B. ;
Zhou C. ;
Vonsky M.S. ;
Mitrofanova L.B. ;
Zou D. ;
Li Q. .
Computers in Biology and Medicine, 2024, 171
[22]   Unsupervised Domain Adaptation for Remote Sensing Semantic Segmentation with Transformer [J].
Li, Weitao ;
Gao, Hui ;
Su, Yi ;
Momanyi, Biffon Manyura .
REMOTE SENSING, 2022, 14 (19)
[23]   Scale variance minimization for unsupervised domain adaptation in image segmentation [J].
Guan, Dayan ;
Huang, Jiaxing ;
Lu, Shijian ;
Xiao, Aoran .
PATTERN RECOGNITION, 2021, 112
[24]   Unsupervised Domain Adaptation for Semantic Segmentation with Global and Local Consistency [J].
Shan, Xiangxuan ;
Yin, Zijin ;
Gao, Jiayi ;
Liang, Kongming ;
Ma, Zhanyu ;
Guo, Jun .
ARTIFICIAL INTELLIGENCE, CICAI 2022, PT I, 2022, 13604 :154-165
[25]   Unsupervised domain adaptation for the segmentation of breast tissue in mammography images [J].
Ryan, Frances ;
Lopez-Linares Roman, Karen ;
Zufiria Gerboles, Blanca ;
May Rebescher, Kristin ;
Stephens Txurio, Maialen ;
Cilla Ugarte, Rodrigo ;
Garcia Gonzalez, Maria Jesus ;
Macia Oliver, Ivan .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 211
[26]   VARIATIONAL AUTOENCODER BASED UNSUPERVISED DOMAIN ADAPTATION FOR SEMANTIC SEGMENTATION [J].
Li, Zongyao ;
Togo, Ren ;
Ogawa, Takahiro ;
Haseyama, Miki .
2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, :2426-2430
[27]   Style Consistency Unsupervised Domain Adaptation Medical Image Segmentation [J].
Chen, Lang ;
Bian, Yun ;
Zeng, Jianbin ;
Meng, Qingquan ;
Zhu, Weifang ;
Shi, Fei ;
Shao, Chengwei ;
Chen, Xinjian ;
Xiang, Dehui .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 :4882-4895
[28]   Unsupervised Domain Adaptation for Cross-Modality Cerebrovascular Segmentation [J].
Wang, Yinuo ;
Meng, Cai ;
Tang, Zhouping ;
Bai, Xiangzhuo ;
Ji, Ping ;
Bai, Xiangzhi .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2025, 29 (04) :2871-2884
[29]   LC-MSM: Language-Conditioned Masked Segmentation Model for unsupervised domain adaptation [J].
Kim, Young-Eun ;
Lee, Yu-Won ;
Lee, Seong-Whan .
PATTERN RECOGNITION, 2024, 148
[30]   Style adaptation for avoiding semantic inconsistency in Unsupervised Domain Adaptation medical image segmentation [J].
Liu, Ziqiang ;
Chen, Zhao-Min ;
Chen, Huiling ;
Teng, Shu ;
Chen, Lei .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 105