There are no proper Berwald-Einstein manifolds

被引:6
作者
Deng, Shaoqing [1 ,2 ]
Kertesz, David Csaba [3 ]
Yan, Zaili [1 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Univ Debrecen, Inst Math, H-4010 Debrecen, Hungary
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2015年 / 86卷 / 1-2期
基金
匈牙利科学研究基金会;
关键词
Finsler spaces; Berwald metric; Ricci curvature; METRICS;
D O I
10.5486/PMD.2015.7102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a connected Berwald Einstein manifold is either Riemannian or Ricci-flat.
引用
收藏
页码:245 / 249
页数:5
相关论文
共 12 条
[1]  
Bao D, 2004, J DIFFER GEOM, V66, P377
[2]  
Bao D., 2000, INTRO RIEMANN FINSLE, DOI 10.1007/978-1-4612-1268-3
[3]   A class of Einstein (α, β)-metrics [J].
Cheng, Xinyue ;
Shen, Zhongmin ;
Tian, Yanfang .
ISRAEL JOURNAL OF MATHEMATICS, 2012, 192 (01) :221-249
[4]  
Deng S., 2012, Homogeneous Finsler Spaces
[5]  
Petersen P., 2006, GRADUATE TEXTS MATH
[6]   On Einstein Matsumoto metrics [J].
Rafie-Rad, M. ;
Rezaei, B. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (02) :882-886
[7]  
Robles C., 2003, PhD dissertation
[8]  
Shen Z., 2001, DIFFERENTIAL GEOMETR, DOI [10.1007/978-94-015-9727-2, DOI 10.1007/978-94-015-9727-2]
[9]   On projectively related Einstein metrics in Riemann-Finsler geometry [J].
Shen, ZM .
MATHEMATISCHE ANNALEN, 2001, 320 (04) :625-647
[10]  
Szab Z., 1981, Tensor, V35, P25