Orbital Angular Momentum Multiplexed Quantum Dense Coding

被引:74
作者
Chen, Yingxuan [1 ]
Liu, Shengshuai [1 ]
Lou, Yanbo [1 ]
Jing, Jietai [1 ,2 ,3 ,4 ]
机构
[1] East China Normal Univ, Joint Inst Adv Sci & Technol, Sch Phys & Elect Sci, State Key Lab Precis Spect, Shanghai 200062, Peoples R China
[2] CAS Ctr Excellent Ultraintense Laser Sci, Shanghai 201800, Peoples R China
[3] Zhejiang Univ, Dept Phys, Hangzhou 310027, Peoples R China
[4] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
TELEPORTATION; STATE;
D O I
10.1103/PhysRevLett.127.093601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To beat the channel capacity limit of conventional quantum dense coding (QDC) with fixed quantum resources, we experimentally implement the orbital angular momentum (OAM) multiplexed QDC (MQDC) in a continuous variable system based on a four-wave mixing process. First, we experimentally demonstrate that the Einstein-Podolsky-Rosen entanglement source coded on OAMmodes can be used in a single channel to realize the QDC scheme. Then, we implement the OAM MQDC scheme by using the Einstein-Podolsky-Rosen entanglement source coded on OAM superposition modes. In the end, we make an explicit comparison of channel capacities for four different schemes and find that the channel capacity of the OAM MQDC scheme is substantially enhanced compared to the conventional QDC scheme without multiplexing. The channel capacity of our OAM MQDC scheme can be further improved by increasing the squeezing parameter and the number of multiplexed OAM modes in the channel. Our results open an avenue to construct high-capacity quantum communication networks.
引用
收藏
页数:6
相关论文
共 38 条
[1]   ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES [J].
ALLEN, L ;
BEIJERSBERGEN, MW ;
SPREEUW, RJC ;
WOERDMAN, JP .
PHYSICAL REVIEW A, 1992, 45 (11) :8185-8189
[2]   Quantum dense coding via a two-mode squeezed-vacuum state [J].
Ban, M .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 1999, 1 (06) :L9-L11
[3]   Hexapartite Entanglement in an above-Threshold Optical Parametric Oscillator [J].
Barbosa, F. A. S. ;
Coelho, A. S. ;
Munoz-Martinez, L. F. ;
Ortiz-Gutierrez, L. ;
Villar, A. S. ;
Nussenzveig, P. ;
Martinelli, M. .
PHYSICAL REVIEW LETTERS, 2018, 121 (07)
[4]   Beating the channel capacity limit for linear photonic superdense coding [J].
Barreiro, Julio T. ;
Wei, Tzu-Chieh ;
Kwiat, Paul G. .
NATURE PHYSICS, 2008, 4 (04) :282-286
[5]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[6]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[7]   Experimental quantum teleportation [J].
Bouwmeester, D ;
Pan, JW ;
Mattle, K ;
Eibl, M ;
Weinfurter, H ;
Zeilinger, A .
NATURE, 1997, 390 (6660) :575-579
[8]   Entangled images from four-wave mixing [J].
Boyer, Vincent ;
Marino, Alberto M. ;
Pooser, Raphael C. ;
Lett, Paul D. .
SCIENCE, 2008, 321 (5888) :544-547
[9]   Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers [J].
Bozinovic, Nenad ;
Yue, Yang ;
Ren, Yongxiong ;
Tur, Moshe ;
Kristensen, Poul ;
Huang, Hao ;
Willner, Alan E. ;
Ramachandran, Siddharth .
SCIENCE, 2013, 340 (6140) :1545-1548
[10]   Dense coding for continuous variables [J].
Braunstein, SL ;
Kimble, HJ .
PHYSICAL REVIEW A, 2000, 61 (04) :4