Global well-posedness for a Smoluchowski equation coupled with Navier-Stokes equations in 2D

被引:67
作者
Constantin, P. [1 ]
Masmoudi, Nader [2 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] NYU, Courant Inst, New York, NY 10012 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00220-007-0384-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove global existence for a nonlinear Smoluchowski equation (a nonlinear Fokker-Planck equation) coupled with Navier-Stokes equations in 2d. The proof uses a deteriorating regularity estimate in the spirit of [5] (see also [1]).
引用
收藏
页码:179 / 191
页数:13
相关论文
共 23 条
[1]  
[Anonymous], KINETIC THEORY
[2]   TRANSPORT-EQUATIONS RELATIVE TO NON-LIPSCHITZ VECTOR-FIELDS AND FLUID-MECHANICS [J].
BAHOURI, H ;
CHEMIN, JY .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 127 (02) :159-181
[3]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[4]   About lifespan of regular solutions of equations related to viscoelastic fluids [J].
Chemin, JY ;
Masmoudi, N .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (01) :84-112
[5]  
Chemin JY, 1999, J ANAL MATH, V77, P27, DOI 10.1007/BF02791256
[6]   Regularity of coupled two-dimensional nonlinear Fokker-Planck and Navier-Stokes systems [J].
Constantin, P. ;
Fefferman, C. ;
Titi, E. S. ;
Zarnescu, A. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (03) :789-811
[7]  
Constantin P, 2005, COMMUN MATH SCI, V3, P531
[8]  
Doi M., 1986, The Theory of Polymer Dynamics
[9]  
Fernandez-Cara E., 2000, MATH ANAL VISCOELAST
[10]  
Fernandez-Cara E., 1998, Ann. Sc. Norm. Super. Pisa, Cl. Sci., V4, P1