Causal Inference Engine: a platform for directional gene set enrichment analysis and inference of active transcriptional regulators

被引:9
作者
Farahmand, Saman [1 ]
O'Connor, Corey [2 ]
Macoska, Jill A. [3 ]
Zarringhalam, Kourosh [1 ,4 ]
机构
[1] Univ Massachusetts, Computat Sci PhD Program, Boston, MA 02125 USA
[2] Univ Massachusetts, Dept Comp Sci, Boston, MA 02125 USA
[3] Univ Massachusetts, Ctr Personalized Canc Therapy, Boston, MA 02125 USA
[4] Univ Massachusetts, Dept Math, Boston, MA 02125 USA
关键词
PRIOR KNOWLEDGE; NETWORKS; PATHWAY; BETA; DYNAMICS; MODELS; TARGET; CANCER; CELLS;
D O I
10.1093/nar/gkz1046
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Inference of active regulatory mechanisms underlying specific molecular and environmental perturbations is essential for understanding cellular response. The success of inference algorithms relies on the quality and coverage of the underlying network of regulator-gene interactions. Several commercial platforms provide large and manually curated regulatory networks and functionality to perform inference on these networks. Adaptation of such platforms for open-source academic applications has been hindered by the lack of availability of accurate, high-coverage networks of regulatory interactions and integration of efficient causal inference algorithms. In this work, we present CIE, an integrated platform for causal inference of active regulatory mechanisms form differential gene expression data. Using a regularized Gaussian Graphical Model, we construct a transcriptional regulatory network by integrating publicly available ChIP-seq experiments with gene-expression data from tissue-specific RNA-seq experiments. Our GGM approach identifies high confidence transcription factor (TF)-gene interactions and annotates the interactions with information on mode of regulation (activation vs. repression). Benchmarks against manually curated databases of TF-gene interactions show that our method can accurately detect mode of regulation. We demonstrate the ability of our platform to identify active transcriptional regulators by using controlled in vitro overexpression and stem-cell differentiation studies and utilize our method to investigate transcriptional mechanisms of fibroblast phenotypic plasticity.
引用
收藏
页码:11563 / 11573
页数:11
相关论文
共 56 条
[1]   Genetic effects on gene expression across human tissues [J].
Aguet, Francois ;
Brown, Andrew A. ;
Castel, Stephane E. ;
Davis, Joe R. ;
He, Yuan ;
Jo, Brian ;
Mohammadi, Pejman ;
Park, Yoson ;
Parsana, Princy ;
Segre, Ayellet V. ;
Strober, Benjamin J. ;
Zappala, Zachary ;
Cummings, Beryl B. ;
Gelfand, Ellen T. ;
Hadley, Kane ;
Huang, Katherine H. ;
Lek, Monkol ;
Li, Xiao ;
Nedzel, Jared L. ;
Nguyen, Duyen Y. ;
Noble, Michael S. ;
Sullivan, Timothy J. ;
Tukiainen, Taru ;
MacArthur, Daniel G. ;
Getz, Gad ;
Management, Nih Program ;
Addington, Anjene ;
Guan, Ping ;
Koester, Susan ;
Little, A. Roger ;
Lockhart, Nicole C. ;
Moore, Helen M. ;
Rao, Abhi ;
Struewing, Jeffery P. ;
Volpi, Simona ;
Collection, Biospecimen ;
Brigham, Lori E. ;
Hasz, Richard ;
Hunter, Marcus ;
Johns, Christopher ;
Johnson, Mark ;
Kopen, Gene ;
Leinweber, William F. ;
Lonsdale, John T. ;
McDonald, Alisa ;
Mestichelli, Bernadette ;
Myer, Kevin ;
Roe, Bryan ;
Salvatore, Michael ;
Shad, Saboor .
NATURE, 2017, 550 (7675) :204-+
[2]  
[Anonymous], BIORXIV
[3]   Large-scale learning of combinatorial transcriptional dynamics from gene expression [J].
Asif, H. M. Shahzad ;
Sanguinetti, Guido .
BIOINFORMATICS, 2011, 27 (09) :1277-1283
[4]   Oncogenic pathway signatures in human cancers as a guide to targeted therapies [J].
Bild, AH ;
Yao, G ;
Chang, JT ;
Wang, QL ;
Potti, A ;
Chasse, D ;
Joshi, MB ;
Harpole, D ;
Lancaster, JM ;
Berchuck, A ;
Olson, JA ;
Marks, JR ;
Dressman, HK ;
West, M ;
Nevins, JR .
NATURE, 2006, 439 (7074) :353-357
[5]   EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer [J].
Adrian P. Bracken ;
Diego Pasini ;
Maria Capra ;
Elena Prosperini ;
Elena Colli ;
Kristian Helin .
The EMBO Journal, 2003, 22 (20) :5323-5335
[6]   Inferring genetic regulatory logic from expression data [J].
Bulashevska, S ;
Eils, R .
BIOINFORMATICS, 2005, 21 (11) :2706-2713
[7]   Inferring signalling dynamics by integrating interventional with observational data [J].
Cardner, Mathias ;
Meyer-Schaller, Nathalie ;
Christofori, Gerhard ;
Beerenwinkel, Niko .
BIOINFORMATICS, 2019, 35 (14) :I577-I585
[8]   Pathway Commons, a web resource for biological pathway data [J].
Cerami, Ethan G. ;
Gross, Benjamin E. ;
Demir, Emek ;
Rodchenkov, Igor ;
Babur, Oezguen ;
Anwar, Nadia ;
Schultz, Nikolaus ;
Bader, Gary D. ;
Sander, Chris .
NUCLEIC ACIDS RESEARCH, 2011, 39 :D685-D690
[9]   Emerging roles of E2Fs in cancer: an exit from cell cycle control [J].
Chen, Hui-Zi ;
Tsai, Shih-Yin ;
Leone, Gustavo .
NATURE REVIEWS CANCER, 2009, 9 (11) :785-797
[10]   Causal reasoning on biological networks: interpreting transcriptional changes [J].
Chindelevitch, Leonid ;
Ziemek, Daniel ;
Enayetallah, Ahmed ;
Randhawa, Ranjit ;
Sidders, Ben ;
Brockel, Christoph ;
Huang, Enoch S. .
BIOINFORMATICS, 2012, 28 (08) :1114-1121