Highly selective H2S gas sensor based on Cu-doped ZnO nanocrystalline films deposited by RF magnetron sputtering of powder target

被引:83
作者
Girija, K. G. [1 ]
Somasundaram, K. [1 ,3 ]
Topkar, Anita [2 ]
Vatsa, R. K. [1 ]
机构
[1] Bhabha Atom Res Ctr, Div Chem, Mumbai 400085, Maharashtra, India
[2] Bhabha Atom Res Ctr, Div Elect, Mumbai 400085, Maharashtra, India
[3] Nallamuthu Gounder Mahalingam Coll, Dept Phys, Pollachi 642001, Tamil Nadu, India
关键词
Nanocrystalline Cu-doped ZnO; RF sputtering; Gas sensor; H2S; SENSING PROPERTIES; THIN-FILMS; OPTICAL-PROPERTIES; HYDROGEN; MICROSTRUCTURES; NANOSTRUCTURES;
D O I
10.1016/j.jallcom.2016.05.125
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cu - doped ZnO (CZO) films were synthesized by RF magnetron sputtering of composite target prepared with powders of ZnO and copper. Crystalline nature, morphology and chemical/ electronic composition of the films were investigated by X-ray diffraction (XRD), Atomic Force Microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). XRD showed hexagonal wurtzite structure with strong c-axis orientation for both doped and undoped films. AFM study revealed uniform deposition of nanocrystallites and XPS confirmed the Cu incorporation into ZnO lattice. Further the H2S sensing properties of the CZO films were investigated at different operating temperatures and gas concentrations. While all the doped films were highly selective to H2S, 2% CZO film showed highest sensitivity at an operating temperature of 250 degrees C. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:15 / 20
页数:6
相关论文
共 50 条
  • [41] Al-doped ZnO thin films deposited by reactive frequency magnetron sputtering:: H2-induced property changes
    Liu, Weifeng
    Du, Guotong
    Sun, Yanfeng
    Xu, Yibin
    Yang, Tianpeng
    Wang, Xinsheng
    Chang, Yuchun
    Qiu, Fabin
    THIN SOLID FILMS, 2007, 515 (05) : 3057 - 3060
  • [42] Gas-sensing properties and mechanisms of Cu-doped SnO2 spheres towards H2S
    Wang, Chenxi
    Zeng, Wen
    Luo, Longjing
    Zhang, Peige
    Wang, Zhongchang
    CERAMICS INTERNATIONAL, 2016, 42 (08) : 10006 - 10013
  • [43] Copper doped SnO2 nanowires as highly sensitive H2S gas sensor
    Kumar, Vivek
    Sen, Shashwati
    Muthe, K. P.
    Gaur, N. K.
    Gupta, S. K.
    Yakhmi, J. V.
    SENSORS AND ACTUATORS B-CHEMICAL, 2009, 138 (02): : 587 - 590
  • [44] HIGHLY SENSITIVE AND SELECTIVE H2S GAS SENSOR FROM RF-SPUTTERED SNO2 THIN-FILM
    MOCHIDA, T
    KIKUCHI, K
    KONDO, T
    UENO, H
    MATSUURA, Y
    SENSORS AND ACTUATORS B-CHEMICAL, 1995, 25 (1-3) : 433 - 437
  • [45] Epitaxial Growth and Characterization of Highly Ga-doped ZnO Thin Films Deposited on Al2O3 (0001) Substrates by Using the RF Magnetron Sputtering Method
    Shin, Seung Wook
    Pawar, S. M.
    Moon, Jong-Ha
    Kim, Jin Hyeok
    Kim, Sung Dae
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2009, 55 (03) : 1093 - 1097
  • [46] PREPARATION AND CHARACTERIZATION OF ZnO: SnO2 NANOCOMPOSITE THIN FILMS ON POROUS SILICON AS H2S GAS SENSOR
    Al-Jumaili, H. S.
    Jasim, M. N.
    JOURNAL OF OVONIC RESEARCH, 2019, 15 (01): : 81 - 87
  • [47] H2S gas sensitive indium-doped ZnO thin films: Preparation and characterization
    Badadhe, Satish S.
    Mulla, I. S.
    SENSORS AND ACTUATORS B-CHEMICAL, 2009, 143 (01) : 164 - 170
  • [48] Au Nanoparticles in Nanocrystalline TiO2-NiO Films for SPR-Based, Selective H2S Gas Sensing
    Della Gaspera, Enrico
    Guglielmi, Massimo
    Agnoli, Stefano
    Granozzi, Gaetano
    Post, Michael L.
    Bello, Valentina
    Mattei, Giovanni
    Martucci, Alessandro
    CHEMISTRY OF MATERIALS, 2010, 22 (11) : 3407 - 3417
  • [49] H2S gas sensitive Sn-doped ZnO thin films: Synthesis and characterization
    Shewale, P. S.
    Yu, Y. S.
    Kim, J. H.
    Bobade, C. R.
    Uplane, M. D.
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2015, 112 : 348 - 356
  • [50] Highly selective H2S gas sensor based on WO3-coated SnO2 nanowires
    Tran Thi Ngoc Hoa
    Dang Thi Thanh Le
    Nguyen Van Toan
    Nguyen Van Duy
    Chu Manh Hung
    Nguyen Van Hieu
    Nguyen Duc Hoa
    MATERIALS TODAY COMMUNICATIONS, 2021, 26