Disease Modelling of Cognitive Outcomes and Biomarkers in the European Prevention of Alzheimer's Dementia Longitudinal Cohort

被引:5
作者
Howlett, James [1 ]
Hill, Steven M. [1 ,3 ]
Ritchie, Craig W. [2 ]
Tom, Brian D. M. [1 ]
机构
[1] Univ Cambridge, MRC Biostat Unit, Cambridge, England
[2] Univ Edinburgh, Ctr Clin Brain Sci, Edinburgh, Midlothian, Scotland
[3] Univ Manchester, Canc Res UK Manchester Inst, Canc Biomarker Ctr, Manchester, Lancs, England
来源
FRONTIERS IN BIG DATA | 2021年 / 4卷
基金
英国医学研究理事会;
关键词
Alzheimer's disease; biomarkers; cognitive functioning; disease modelling; European prevention of Alzheimer's dementia; latent class mixed models; precision medicine; Bayesian profile regression; HYPOTHETICAL MODEL; PROFILE REGRESSION; LATENT PROCESS; R PACKAGE; DECLINE; PROGRESSION; TRANSITIONS; STATES; EVENT; DEATH;
D O I
10.3389/fdata.2021.676168
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A key challenge for the secondary prevention of Alzheimer's dementia is the need to identify individuals early on in the disease process through sensitive cognitive tests and biomarkers. The European Prevention of Alzheimer's Dementia (EPAD) consortium recruited participants into a longitudinal cohort study with the aim of building a readiness cohort for a proof-of-concept clinical trial and also to generate a rich longitudinal data-set for disease modelling. Data have been collected on a wide range of measurements including cognitive outcomes, neuroimaging, cerebrospinal fluid biomarkers, genetics and other clinical and environmental risk factors, and are available for 1,828 eligible participants at baseline, 1,567 at 6 months, 1,188 at one-year follow-up, 383 at 2 years, and 89 participants at three-year follow-up visit. We novelly apply state-of-the-art longitudinal modelling and risk stratification approaches to these data in order to characterise disease progression and biological heterogeneity within the cohort. Specifically, we use longitudinal class-specific mixed effects models to characterise the different clinical disease trajectories and a semi-supervised Bayesian clustering approach to explore whether participants can be stratified into homogeneous subgroups that have different patterns of cognitive functioning evolution, while also having subgroup-specific profiles in terms of baseline biomarkers and longitudinal rate of change in biomarkers.
引用
收藏
页数:18
相关论文
共 89 条
[21]   Joining and Splitting Models with Markov Melding [J].
Goudie, Robert J. B. ;
Presanis, Anne M. ;
Lunn, David ;
De Angelis, Daniela ;
Wernisch, Lorenz .
BAYESIAN ANALYSIS, 2019, 14 (01) :81-109
[22]  
Goyal Devendra, 2018, Alzheimers Dement (Amst), V10, P629, DOI 10.1016/j.dadm.2018.06.007
[23]  
Hall CB, 2000, STAT MED, V19, P1555, DOI 10.1002/(SICI)1097-0258(20000615/30)19:11/12<1555::AID-SIM445>3.0.CO
[24]  
2-3
[25]   CSF biomarkers of Alzheimer's disease concord with amyloid-β PET and predict clinical progression: A study of fully automated immunoassays in BioFINDER and ADNI cohorts [J].
Hansson, Oskar ;
Seibyl, John ;
Stomrud, Erik ;
Zetterberg, Henrik ;
Trojanowski, John Q. ;
Bittner, Tobias ;
Lifke, Valeria ;
Corradini, Veronika ;
Eichenlaub, Udo ;
Batrla, Richard ;
Buck, Katharina ;
Zink, Katharina ;
Rabe, Christina ;
Blennow, Kaj ;
Shaw, Leslie M. .
ALZHEIMERS & DEMENTIA, 2018, 14 (11) :1470-1481
[26]   Medicine - The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics [J].
Hardy, J ;
Selkoe, DJ .
SCIENCE, 2002, 297 (5580) :353-356
[27]   A comparison of non-homogeneous Markov regression models with application to Alzheimer's disease progression [J].
Hubbard, R. A. ;
Zhou, X. H. .
JOURNAL OF APPLIED STATISTICS, 2011, 38 (10) :2313-2326
[28]   Predicting the course of Alzheimer’s progression [J].
Iddi S. ;
Li D. ;
Aisen P.S. ;
Rafii M.S. ;
Thompson W.K. ;
Donohue M.C. .
Brain Informatics, 2019, 6 (01)
[29]   Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers [J].
Jack, Clifford R., Jr. ;
Knopman, David S. ;
Jagust, William J. ;
Petersen, Ronald C. ;
Weiner, Michael W. ;
Aisen, Paul S. ;
Shaw, Leslie M. ;
Vemuri, Prashanthi ;
Wiste, Heather J. ;
Weigand, Stephen D. ;
Lesnick, Timothy G. ;
Pankratz, Vernon S. ;
Donohue, Michael C. ;
Trojanowski, John Q. .
LANCET NEUROLOGY, 2013, 12 (02) :207-216
[30]   Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade [J].
Jack, Clifford R., Jr. ;
Knopman, David S. ;
Jagust, William J. ;
Shaw, Leslie M. ;
Aisen, Paul S. ;
Weiner, Michael W. ;
Petersen, Ronald C. ;
Trojanowski, John Q. .
LANCET NEUROLOGY, 2010, 9 (01) :119-128