Disease Modelling of Cognitive Outcomes and Biomarkers in the European Prevention of Alzheimer's Dementia Longitudinal Cohort

被引:5
作者
Howlett, James [1 ]
Hill, Steven M. [1 ,3 ]
Ritchie, Craig W. [2 ]
Tom, Brian D. M. [1 ]
机构
[1] Univ Cambridge, MRC Biostat Unit, Cambridge, England
[2] Univ Edinburgh, Ctr Clin Brain Sci, Edinburgh, Midlothian, Scotland
[3] Univ Manchester, Canc Res UK Manchester Inst, Canc Biomarker Ctr, Manchester, Lancs, England
来源
FRONTIERS IN BIG DATA | 2021年 / 4卷
基金
英国医学研究理事会;
关键词
Alzheimer's disease; biomarkers; cognitive functioning; disease modelling; European prevention of Alzheimer's dementia; latent class mixed models; precision medicine; Bayesian profile regression; HYPOTHETICAL MODEL; PROFILE REGRESSION; LATENT PROCESS; R PACKAGE; DECLINE; PROGRESSION; TRANSITIONS; STATES; EVENT; DEATH;
D O I
10.3389/fdata.2021.676168
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A key challenge for the secondary prevention of Alzheimer's dementia is the need to identify individuals early on in the disease process through sensitive cognitive tests and biomarkers. The European Prevention of Alzheimer's Dementia (EPAD) consortium recruited participants into a longitudinal cohort study with the aim of building a readiness cohort for a proof-of-concept clinical trial and also to generate a rich longitudinal data-set for disease modelling. Data have been collected on a wide range of measurements including cognitive outcomes, neuroimaging, cerebrospinal fluid biomarkers, genetics and other clinical and environmental risk factors, and are available for 1,828 eligible participants at baseline, 1,567 at 6 months, 1,188 at one-year follow-up, 383 at 2 years, and 89 participants at three-year follow-up visit. We novelly apply state-of-the-art longitudinal modelling and risk stratification approaches to these data in order to characterise disease progression and biological heterogeneity within the cohort. Specifically, we use longitudinal class-specific mixed effects models to characterise the different clinical disease trajectories and a semi-supervised Bayesian clustering approach to explore whether participants can be stratified into homogeneous subgroups that have different patterns of cognitive functioning evolution, while also having subgroup-specific profiles in terms of baseline biomarkers and longitudinal rate of change in biomarkers.
引用
收藏
页数:18
相关论文
共 89 条
[1]   Why do so many clinical trials of therapies for Alzheimer's disease fail? [J].
Anderson, Roy M. ;
Hadjichrysanthou, Christoforos ;
Evans, Stephanie ;
Wong, Mei Mei .
LANCET, 2017, 390 (10110) :2327-2329
[2]  
Bachman A.H., 2020, BIOMARKERS NEUROPSYC, V3, DOI [10.1016/j.bionps.2020.100028, DOI 10.1016/J.BIONPS.2020.100028]
[3]   Clinical and Biomarker Changes in Dominantly Inherited Alzheimer's Disease [J].
Bateman, Randall J. ;
Xiong, Chengjie ;
Benzinger, Tammie L. S. ;
Fagan, Anne M. ;
Goate, Alison ;
Fox, Nick C. ;
Marcus, Daniel S. ;
Cairns, Nigel J. ;
Xie, Xianyun ;
Blazey, Tyler M. ;
Holtzman, David M. ;
Santacruz, Anna ;
Buckles, Virginia ;
Oliver, Angela ;
Moulder, Krista ;
Aisen, Paul S. ;
Ghetti, Bernardino ;
Klunk, William E. ;
McDade, Eric ;
Martins, Ralph N. ;
Masters, Colin L. ;
Mayeux, Richard ;
Ringman, John M. ;
Rossor, Martin N. ;
Schofield, Peter R. ;
Sperling, Reisa A. ;
Salloway, Stephen ;
Morris, John C. .
NEW ENGLAND JOURNAL OF MEDICINE, 2012, 367 (09) :795-804
[4]   Modeling and prediction of clinical symptom trajectories in Alzheimer's disease using longitudinal data [J].
Bhagwat, Nikhil ;
Viviano, Joseph D. ;
Voineskos, Aristotle N. ;
Chakravarty, M. Mallar .
PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (09)
[5]   Quantifying and Comparing Dynamic Predictive Accuracy of Joint Models for Longitudinal Marker and Time-to-Event in Presence of Censoring and Competing Risks [J].
Blanche, Paul ;
Proust-Lima, Cecile ;
Loubere, Lucie ;
Berr, Claudine ;
Dartigues, Jean-Francois ;
Jacqmin-Gadda, Helene .
BIOMETRICS, 2015, 71 (01) :102-113
[6]   Frequency of stages of Alzheimer-related lesions in different age categories [J].
Braak, H ;
Braak, E .
NEUROBIOLOGY OF AGING, 1997, 18 (04) :351-357
[7]   NEUROPATHOLOGICAL STAGING OF ALZHEIMER-RELATED CHANGES [J].
BRAAK, H ;
BRAAK, E .
ACTA NEUROPATHOLOGICA, 1991, 82 (04) :239-259
[8]   Alzheimer's disease: Pathogenesis and prevention [J].
Braak, Heiko ;
Del Tredici, Kelly .
ALZHEIMERS & DEMENTIA, 2012, 8 (03) :227-233
[9]   Joint Multi-Modal Longitudinal Regression and Classification for Alzheimer's Disease Prediction [J].
Brand, Lodewijk ;
Nichols, Kai ;
Wang, Hua ;
Shen, Li ;
Huang, Heng .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (06) :1845-1855
[10]   Staging Alzheimer's Disease Risk by Sequencing Brain Function and Structure, Cerebrospinal Fluid, and Cognition Biomarkers [J].
Chen, Guangyu ;
Shu, Hao ;
Chen, Gang ;
Ward, B. Douglas ;
Antuono, Piero G. ;
Zhang, Zhijun ;
Li, Shi-Jiang .
JOURNAL OF ALZHEIMERS DISEASE, 2016, 54 (03) :983-993