Ultralow percolation threshold and enhanced electromagnetic interference shielding in poly(L-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks

被引:341
作者
Zhang, Kai [1 ]
Li, Gen-Hui [1 ]
Feng, La-Mei [1 ]
Wang, Ning [2 ]
Guo, Jiang [3 ]
Sun, Kai [3 ]
Yu, Kai-Xin [1 ]
Zeng, Jian-Bing [1 ]
Li, Tingxi [4 ]
Guo, Zhanhu [3 ]
Wang, Ming [1 ]
机构
[1] Southwest Univ, Sch Chem & Chem Engn, Key Lab Appl Chem Chongqing Municipal, Chongqing 400715, Peoples R China
[2] Engn Multifunct Composites EMC Nanotechnol LLC, Knoxville, TN 37934 USA
[3] Univ Tennessee, Dept Chem & Biomol Engn, ICL, Knoxville, TN 37996 USA
[4] Shandong Univ Sci & Technol, Coll Mat Sci & Engn, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金;
关键词
WEIGHT POLYETHYLENE COMPOSITES; POLYMER COMPOSITES; POLY(LACTIC ACID); MECHANICAL-PROPERTIES; MOLECULAR-WEIGHT; RHEOLOGICAL PROPERTIES; BUTADIENE-STYRENE; FOAM COMPOSITES; PERFORMANCE; MORPHOLOGY;
D O I
10.1039/c7tc02948a
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electrically conductive segregated networks were built in poly(L-lactide)/multi-walled carbon nanotube (PLLA/MWCNT) nanocomposites without sacrificing their mechanical properties via simply choosing two different PLLA polymers with different viscosities and crystallinities. First, the MWCNTs were dispersed in PLLA with low viscosity and crystallinity (L-PLLA) to obtain the L-PLANT phase. Second, the PLLA particles with high viscosity and crystallinity (H-PLLA) were well coated with the L-PLANT phase at 140 degrees C which was below the melting temperature of H-PLLA. Finally, the coated H-PLLA particles were compressed above the melting temperature of H-PLLA to form the PLLA/MWCNT nanocomposites with segregated structures. The morphological observation showed the successful location of MWCNTs in the continuous L-PLLA phase, resulting in an ultralow percolation threshold of 0.019 vol% MWCNTs. The electrical conductivity and the electromagnetic interference (EMI) shielding effectiveness (SE) of the composites with the segregated structure are 25 S m(-1) and similar to 30 dB, showing three orders and 36% higher than that of the samples with a random distribution of MWCNTs with 0.8 vol% of MWCNT loading, respectively. High-performance electromagnetic interference (EMI) shielding was also observed mainly dependent on the highly efficient absorption shielding, which can be achieved by the densely continuous MWCNT networks and the abundant interfaces induced by the segregated structures. Furthermore, the composites with segregated structures not only showed higher Young's modulus and tensile strength than the corresponding conventional composites, but also maintained high elongation at break because of the continuous and dense MWCNT networks induced by the segregated structures and the high interfacial interaction between H-PLLA and L-PLLA.
引用
收藏
页码:9359 / 9369
页数:11
相关论文
共 101 条
[1]   Multi-walled carbon nanotube/polyethersulfone nanocomposites for enhanced electrical conductivity, dielectric properties and efficient electromagnetic interference shielding at low thickness [J].
Abbas, Nadir ;
Kim, Hee Taik .
MACROMOLECULAR RESEARCH, 2016, 24 (12) :1084-1090
[2]   Microstructure, electrical, and electromagnetic interference shielding properties of carbon nanotube/acrylonitrile-butadiene-styrene nanocomposites [J].
Al-Saleh, Mohammed H. ;
Sundararaj, Uttandaraman .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2012, 50 (19) :1356-1362
[3]   Electromagnetic interference shielding mechanisms of CNT/polymer composites [J].
Al-Saleh, Mohammed H. ;
Sundararaj, Uttandaraman .
CARBON, 2009, 47 (07) :1738-1746
[4]  
Anh Son Hoang, 2011, Advances in Natural Sciences: Nanoscience & Nanotechnology, V2, DOI 10.1088/2043-6262/2/2/025007
[5]  
[Anonymous], POLYMER
[6]  
[Anonymous], PHYS REV B
[7]  
[Anonymous], J MAT CHEM A
[8]   Effect of synthesis catalyst on structure of nitrogen-doped carbon nanotubes and electrical conductivity and electromagnetic interference shielding of their polymeric nanocomposites [J].
Arjmand, Mohammad ;
Chizari, Kambiz ;
Krause, Beate ;
Poetschke, Petra ;
Sundararaj, Uttandaraman .
CARBON, 2016, 98 :358-372
[9]   Outstanding electromagnetic interference shielding of silver nanowires: comparison with carbon nanotubes [J].
Arjmand, Mohammad ;
Moud, Aref Abbasi ;
Li, Yan ;
Sundararaj, Uttandaraman .
RSC ADVANCES, 2015, 5 (70) :56590-56598
[10]   Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites [J].
Arjmand, Mohammad ;
Apperley, Thomas ;
Okoniewski, Michal ;
Sundararaj, Uttandaraman .
CARBON, 2012, 50 (14) :5126-5134