Profiling genome-wide DNA methylation

被引:217
作者
Yong, Wai-Shin [1 ]
Hsu, Fei-Man [2 ]
Chen, Pao-Yang [1 ]
机构
[1] Acad Sinica, Inst Plant & Microbial Biol, Taipei 11529, Taiwan
[2] Univ Tokyo, Grad Sch Frontier Sci, Chiba 2778561, Japan
关键词
DNA methylation; Bisulfite sequencing; Hydroxymethylation; Single-cell; Methylome; WGBS; RRBS; SINGLE-BASE-RESOLUTION; HIGH-THROUGHPUT; MEDIP-SEQ; CPG METHYLATION; START SITES; BISULFITE; METHYLOME; REVEALS; IMMUNOPRECIPITATION; PIPELINE;
D O I
10.1186/s13072-016-0075-3
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
DNA methylation is an epigenetic modification that plays an important role in regulating gene expression and therefore a broad range of biological processes and diseases. DNA methylation is tissue-specific, dynamic, sequence-context-dependent and trans-generationally heritable, and these complex patterns of methylation highlight the significance of profiling DNA methylation to answer biological questions. In this review, we surveyed major methylation assays, along with comparisons and biological examples, to provide an overview of DNA methylation profiling techniques. The advances in microarray and sequencing technologies make genome-wide profiling possible at a single-nucleotide or even a single-cell resolution. These profiling approaches vary in many aspects, such as DNA input, resolution, genomic region coverage, and bioinformatics analysis, and selecting a feasible method requires knowledge of these methods. We first introduce the biological background of DNA methylation and its pattern in plants, animals and fungi. We present an overview of major experimental approaches to profiling genome-wide DNA methylation and hydroxymethylation and then extend to the single-cell methylome. To evaluate these methods, we outline their strengths and weaknesses and perform comparisons across the different platforms. Due to the increasing need to compute high-throughput epigenomic data, we interrogate the computational pipeline for bisulfite sequencing data and also discuss the concept of identifying differentially methylated regions (DMRs). This review summarizes the experimental and computational concepts for profiling genome-wide DNA methylation, followed by biological examples. Overall, this review provides researchers useful guidance for the selection of a profiling method suited to specific research questions.
引用
收藏
页数:16
相关论文
共 120 条
[1]   BLUEPRINT to decode the epigenetic signature written in blood [J].
Adams, David ;
Altucci, Lucia ;
Antonarakis, Stylianos E. ;
Ballesteros, Juan ;
Beck, Stephan ;
Bird, Adrian ;
Bock, Christoph ;
Boehm, Bernhard ;
Campo, Elias ;
Caricasole, Andrea ;
Dahl, Fredrik ;
Dermitzakis, Emmanouil T. ;
Enver, Tariq ;
Esteller, Manel ;
Estivill, Xavier ;
Ferguson-Smith, Anne ;
Fitzgibbon, Jude ;
Flicek, Paul ;
Giehl, Claudia ;
Graf, Thomas ;
Grosveld, Frank ;
Guigo, Roderic ;
Gut, Ivo ;
Helin, Kristian ;
Jarvius, Jonas ;
Kueppers, Ralf ;
Lehrach, Hans ;
Lengauer, Thomas ;
Lernmark, Ake ;
Leslie, David ;
Loeffler, Markus ;
Macintyre, Elizabeth ;
Mai, Antonello ;
Martens, Joost H. A. ;
Minucci, Saverio ;
Ouwehand, Willem H. ;
Pelicci, Pier Giuseppe ;
Pendeville, Helene ;
Porse, Bo ;
Rakyan, Vardhman ;
Reik, Wolf ;
Schrappe, Martin ;
Schuebeler, Dirk ;
Seifert, Martin ;
Siebert, Reiner ;
Simmons, David ;
Soranzo, Nicole ;
Spicuglia, Salvatore ;
Stratton, Michael ;
Stunnenberg, Hendrik G. .
NATURE BIOTECHNOLOGY, 2012, 30 (03) :224-226
[2]   Genome-wide analysis of DNA methylation in subjects with type 1 diabetes identifies epigenetic modifications associated with proliferative diabetic retinopathy [J].
Agardh, Elisabet ;
Lundstig, Annika ;
Perfilyev, Alexander ;
Volkov, Petr ;
Freiburghaus, Tove ;
Lindholm, Eero ;
Ronn, Tina ;
Agardh, Carl-David ;
Ling, Charlotte .
BMC MEDICINE, 2015, 13
[3]  
Akalin A, 2012, GENOME BIOL, V13, DOI [10.1186/gb-2012-13-10-R87, 10.1186/gb-2012-13-10-r87]
[4]  
Bachman M, 2014, NAT CHEM, V6, P1049, DOI [10.1038/NCHEM.2064, 10.1038/nchem.2064]
[5]   DNA methylation of cord blood cell types: Applications for mixed cell birth studies [J].
Bakulski, Kelly M. ;
Feinberg, Jason I. ;
Andrews, Shan V. ;
Yang, Jack ;
Brown, Shannon ;
McKenney, Stephanie L. ;
Witter, Frank ;
Walston, Jeremy ;
Feinberg, Andrew P. ;
Fallin, M. Daniele .
EPIGENETICS, 2016, 11 (05) :354-362
[6]   GBSA: a comprehensive software for analysing whole genome bisulfite sequencing data [J].
Benoukraf, Touati ;
Wongphayak, Sarawut ;
Hadi, Luqman Hakim Abdul ;
Wu, Mengchu ;
Soong, Richie .
NUCLEIC ACIDS RESEARCH, 2013, 41 (04) :e55
[7]   The DNA Methyltransferase Dnmt1 Directly Interacts with the SET and RING Finger-associated (SRA) Domain of the Multifunctional Protein Uhrf1 to Facilitate Accession of the Catalytic Center to Hemi-methylated DNA [J].
Berkyurek, Ahmet Can ;
Suetake, Isao ;
Arita, Kyohei ;
Takeshita, Kohei ;
Nakagawa, Atsushi ;
Shirakawa, Masahiro ;
Tajima, Shoji .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (01) :379-386
[8]   The NIH Roadmap Epigenomics Mapping Consortium [J].
Bernstein, Bradley E. ;
Stamatoyannopoulos, John A. ;
Costello, Joseph F. ;
Ren, Bing ;
Milosavljevic, Aleksandar ;
Meissner, Alexander ;
Kellis, Manolis ;
Marra, Marco A. ;
Beaudet, Arthur L. ;
Ecker, Joseph R. ;
Farnham, Peggy J. ;
Hirst, Martin ;
Lander, Eric S. ;
Mikkelsen, Tarjei S. ;
Thomson, James A. .
NATURE BIOTECHNOLOGY, 2010, 28 (10) :1045-1048
[9]   High density DNA methylation array with single CpG site resolution [J].
Bibikova, Marina ;
Barnes, Bret ;
Tsan, Chan ;
Ho, Vincent ;
Klotzle, Brandy ;
Le, Jennie M. ;
Delano, David ;
Zhang, Lu ;
Schroth, Gary P. ;
Gunderson, Kevin L. ;
Fan, Jian-Bing ;
Shen, Richard .
GENOMICS, 2011, 98 (04) :288-295
[10]   Analysing and interpreting DNA methylation data [J].
Bock, Christoph .
NATURE REVIEWS GENETICS, 2012, 13 (10) :705-719