High responsivity and fast UV?vis?short-wavelength IR photodetector based on Cd3As2/MoS2 heterojunction

被引:22
作者
Huang, Zehua [1 ]
Jiang, Yadong [1 ]
Han, Qi [1 ]
Yang, Ming [1 ]
Han, Jiayue [1 ]
Wang, Fang [2 ,3 ]
Luo, Man [2 ]
Li, Qing [2 ,3 ]
Zhu, He [2 ,3 ]
Liu, Xianchao [1 ]
Gou, Jun [1 ]
Wang, Jun [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Optoelect Sci & Engn, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Sichuan, Peoples R China
[2] Chinese Acad Sci, State Key Lab Infrared Phys, Shanghai Inst Tech Phys, 500 Yutian Rd, Shanghai 200083, Peoples R China
[3] Chinese Acad Sci, Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Hangzhou 310024, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
3D Dirac semimetals; heterojunction; broadband; responsivity; photodetectors; INFRARED PHOTODETECTORS; GRAPHENE;
D O I
10.1088/1361-6528/ab51d3
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
High responsivity, fast response time, ultra-wide detection spectrum are pursuing goals for state-of-art photodetectors. Cd3As2, as a three-dimensional (3D) Dirac semimetal, has a zero bandgap, high light absorption rate in broad spectral region, and higher mobility than graphene at room temperature. However, photoconductive detectors based Cd3As2 suffer low quantum efficiency due to the absence of high built-in field. Here, a Cd3As2 nanoplate/multilayer MoS2 heterojunction photodetector was fabricated which achieved a quite high responsivity of 2.7 & xfffd;& x5e0;10( )(3)A W-?1 at room temperature. The photodetector exhibits a short response time of in broad spectra region from ultraviolet (365 nm) to short-wavelength-infrared (1550 nm) and reached 65 ?s at 650 nm. This work provides a great potential solution for high-performance photodetector and broadband imaging by combining 3D Dirac semi-metal materials with semiconductor materials.
引用
收藏
页数:6
相关论文
共 35 条
[1]   A multicolor, broadband (5-20 μm), quaternary-capped InAs/GaAs quantum dot infrared photodetector [J].
Adhikary, Sourav ;
Aytac, Yigit ;
Meesala, Srujan ;
Wolde, Seyoum ;
Perera, A. G. Unil ;
Chakrabarti, Subhananda .
APPLIED PHYSICS LETTERS, 2012, 101 (26)
[2]   Experimental Realization of a Three-Dimensional Dirac Semimetal [J].
Borisenko, Sergey ;
Gibson, Quinn ;
Evtushinsky, Danil ;
Zabolotnyy, Volodymyr ;
Buechner, Bernd ;
Cava, Robert J. .
PHYSICAL REVIEW LETTERS, 2014, 113 (02)
[3]   Landau level splitting in Cd3As2 under high magnetic fields [J].
Cao, Junzhi ;
Liang, Sihang ;
Zhang, Cheng ;
Liu, Yanwen ;
Huang, Junwei ;
Jin, Zhao ;
Chen, Zhi-Gang ;
Wang, Zhijun ;
Wang, Qisi ;
Zhao, Jun ;
Li, Shiyan ;
Dai, Xi ;
Zou, Jin ;
Xia, Zhengcai ;
Li, Liang ;
Xiu, Faxian .
NATURE COMMUNICATIONS, 2015, 6
[4]   Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2 [J].
Cheiwchanchamnangij, Tawinan ;
Lambrecht, Walter R. L. .
PHYSICAL REVIEW B, 2012, 85 (20)
[5]   High Responsivity, Large-Area Graphene/MoS2 Flexible Photodetectors [J].
De Fazio, Domenico ;
Goykhman, Ilya ;
Yoon, Duhee ;
Bruna, Matteo ;
Eiden, Anna ;
Milana, Silvia ;
Sassi, Ugo ;
Barbone, Matteo ;
Dumcenco, Dumitru ;
Marinov, Kolyo ;
Kis, Andras ;
Ferrari, Andrea C. .
ACS NANO, 2016, 10 (09) :8252-8262
[6]   The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory [J].
Ellis, Jason K. ;
Lucero, Melissa J. ;
Scuseria, Gustavo E. .
APPLIED PHYSICS LETTERS, 2011, 99 (26)
[7]   Electrically Tunable Damping of Plasmonic Resonances with Graphene [J].
Emani, Naresh K. ;
Chung, Ting-Fung ;
Ni, Xingjie ;
Kildishev, Alexander V. ;
Chen, Yong P. ;
Boltasseva, Alexandra .
NANO LETTERS, 2012, 12 (10) :5202-5206
[8]   Hybrid heterojunctions based on 2D materials and 3D thin-films for high-performance photodetectors [J].
Fang, HeHai ;
Hu, WeiDa .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2017, 60 (02)
[9]   GeSn/Ge heterostructure short-wave infrared photodetectors on silicon [J].
Gassenq, A. ;
Gencarelli, F. ;
Van Campenhout, J. ;
Shimura, Y. ;
Loo, R. ;
Narcy, G. ;
Vincent, B. ;
Roelkens, G. .
OPTICS EXPRESS, 2012, 20 (25) :27297-27303
[10]  
Ju L, 2011, NAT NANOTECHNOL, V6, P630, DOI [10.1038/nnano.2011.146, 10.1038/NNANO.2011.146]