A glimpse of the yeast Saccharomyces cerevisiae responses to NaCl stress

被引:8
|
作者
Ren, Hongyang [2 ,3 ]
Wang, Xinhui [1 ]
Liu, Dayu [4 ]
Wang, Bing [2 ,3 ]
机构
[1] Yangtze Normal Univ, Coll Life Sci & Technol, Chongqing 408100, Peoples R China
[2] SW Petr Univ, State Key Lab Oil & Gas Reservoir Geol & Exploit, Chengdu 610500, Peoples R China
[3] SW Petr Univ, Sch Chem & Chem Engn, Chengdu 610500, Peoples R China
[4] Chengdu Univ, Food Proc Applicat Key Lab Sichuan Prov, Chengdu 610106, Peoples R China
来源
关键词
Genomic expression response; HOG (High Osmosis Glycerol) signaling pathway; Saccharomyces cerevisiae; saline stress; MAP KINASE CASCADE; SALINE STRESS; ACTIVATION; PATHWAY;
D O I
10.5897/AJMR11.011
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The budding yeast Saccharomyces cerevisiae has been widely used in fermentation and brewing industries. In industrial fermentation processes, the raw material often attaches certain NaCl or Na+ into bioreactor. High salinity represents an osmotic stress and specific ion toxicity for yeast cell. Protective biochemical reactions range from the synthesis of osmolyte to altered ion transportation, signal transduction, transcriptional response and translational response. This review will focus on responses of the yeast S. cerevisiae and mechanisms of adaptation to NaCl stress and offer a glimpse at the mechanisms of ion homeostasis, regulation of HOG (High Osmosis Glycerol) signaling pathway and the genomic expression response of the cells against the stress.
引用
收藏
页码:713 / 718
页数:6
相关论文
共 50 条
  • [31] The Effect of Lithium on the Budding Yeast Saccharomyces cerevisiae upon Stress Adaptation
    Reith, Patrick
    Braam, Svenja
    Welkenhuysen, Niek
    Lecinski, Sarah
    Shepherd, Jack
    MacDonald, Chris
    Leake, Mark C.
    Hohmann, Stefan
    Shashkova, Sviatlana
    Cvijovic, Marija
    MICROORGANISMS, 2022, 10 (03)
  • [32] Central roles of iron in the regulation of oxidative stress in the yeast Saccharomyces cerevisiae
    Matsuo, Ryo
    Mizobuchi, Shogo
    Nakashima, Maya
    Miki, Kensuke
    Ayusawa, Dai
    Fujii, Michihiko
    CURRENT GENETICS, 2017, 63 (05) : 895 - 907
  • [33] A genomic approach to defining the ethanol stress response in the yeast Saccharomyces cerevisiae
    Chandler, M
    Stanley, GA
    Rogers, P
    Chambers, P
    ANNALS OF MICROBIOLOGY, 2004, 54 (04) : 427 - 454
  • [34] Mitochondrial function is required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae
    Grant, CM
    MacIver, FH
    Dawes, IW
    FEBS LETTERS, 1997, 410 (2-3) : 219 - 222
  • [35] tRNA thiolation links translation to stress responses in Saccharomyces cerevisiae
    Damon, Jadyn R.
    Pincus, David
    Ploegh, Hidde L.
    MOLECULAR BIOLOGY OF THE CELL, 2015, 26 (02) : 270 - 282
  • [36] The intersection between stress responses and inositol pyrophosphates in Saccharomyces cerevisiae
    Morrissette, Victoria A.
    Rolfes, Ronda J.
    CURRENT GENETICS, 2020, 66 (05) : 901 - 910
  • [37] The intersection between stress responses and inositol pyrophosphates in Saccharomyces cerevisiae
    Victoria A. Morrissette
    Ronda J. Rolfes
    Current Genetics, 2020, 66 : 901 - 910
  • [38] Glycerol stress in Saccharomyces cerevisiae: Cellular responses and evolved adaptations
    Mattenberger, Florian
    Sabater-Munoz, Beatriz
    Hallsworth, John E.
    Fares, Mario A.
    ENVIRONMENTAL MICROBIOLOGY, 2017, 19 (03) : 990 - 1007
  • [39] DNA microarray analysis of genomic responses of yeast Saccharomyces cerevisiae to nickel chloride
    Takumi, Shota
    Kimura, Hirokazu
    Matsusaki, Hiromi
    Kawazoe, Sadahiro
    Tominaga, Nobuaki
    Arizono, Koji
    JOURNAL OF TOXICOLOGICAL SCIENCES, 2010, 35 (01): : 125 - 129
  • [40] KILLER SYSTEMS OF THE YEAST SACCHAROMYCES CEREVISIAE
    NESTEROVA, GF
    GENETIKA, 1988, 24 (07): : 1141 - 1152