A glimpse of the yeast Saccharomyces cerevisiae responses to NaCl stress

被引:8
作者
Ren, Hongyang [2 ,3 ]
Wang, Xinhui [1 ]
Liu, Dayu [4 ]
Wang, Bing [2 ,3 ]
机构
[1] Yangtze Normal Univ, Coll Life Sci & Technol, Chongqing 408100, Peoples R China
[2] SW Petr Univ, State Key Lab Oil & Gas Reservoir Geol & Exploit, Chengdu 610500, Peoples R China
[3] SW Petr Univ, Sch Chem & Chem Engn, Chengdu 610500, Peoples R China
[4] Chengdu Univ, Food Proc Applicat Key Lab Sichuan Prov, Chengdu 610106, Peoples R China
关键词
Genomic expression response; HOG (High Osmosis Glycerol) signaling pathway; Saccharomyces cerevisiae; saline stress; MAP KINASE CASCADE; SALINE STRESS; ACTIVATION; PATHWAY;
D O I
10.5897/AJMR11.011
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The budding yeast Saccharomyces cerevisiae has been widely used in fermentation and brewing industries. In industrial fermentation processes, the raw material often attaches certain NaCl or Na+ into bioreactor. High salinity represents an osmotic stress and specific ion toxicity for yeast cell. Protective biochemical reactions range from the synthesis of osmolyte to altered ion transportation, signal transduction, transcriptional response and translational response. This review will focus on responses of the yeast S. cerevisiae and mechanisms of adaptation to NaCl stress and offer a glimpse at the mechanisms of ion homeostasis, regulation of HOG (High Osmosis Glycerol) signaling pathway and the genomic expression response of the cells against the stress.
引用
收藏
页码:713 / 718
页数:6
相关论文
共 23 条
[1]   Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution [J].
Dhar, R. ;
Saegesser, R. ;
Weikert, C. ;
Yuan, J. ;
Wagner, A. .
JOURNAL OF EVOLUTIONARY BIOLOGY, 2011, 24 (05) :1135-1153
[2]  
FERRANDO A, 1995, MOL CELL BIOL, V15, P5470
[3]  
Francesc P, 2000, J BIO CHEM, V275, P172
[4]   Hsp26: a temperature-regulated chaperone [J].
Haslbeck, M ;
Walke, S ;
Stromer, T ;
Ehrnsperger, M ;
White, HE ;
Chen, SX ;
Saibil, HR ;
Buchner, J .
EMBO JOURNAL, 1999, 18 (23) :6744-6751
[5]   Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray [J].
Hirasawa, T ;
Nakakura, Y ;
Yoshikawa, K ;
Ashitani, K ;
Nagahisa, K ;
Furusawa, C ;
Katakura, Y ;
Shimizu, H ;
Shioya, S .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2006, 70 (03) :346-357
[6]   Osmotic stress signaling and osmoadaptation in Yeasts [J].
Hohmann, S .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2002, 66 (02) :300-+
[7]   Differential stabilities of phosphorylated response regulator domains reflect functional roles of the yeast osmoregulatory SLN1 and SSK1 proteins [J].
Janiak-Spens, F ;
Sparling, JM ;
Gurfinkel, M ;
West, AH .
JOURNAL OF BACTERIOLOGY, 1999, 181 (02) :411-417
[8]   Functional roles of conserved amino acid residues surrounding the phosphorylatable histidine of the yeast phosphorelay protein YPD1 [J].
Janiak-Spens, F ;
West, AH .
MOLECULAR MICROBIOLOGY, 2000, 37 (01) :136-144
[9]   Novel role for an HPt domain in stabilizing the phosphorylated state of a response regulator domain [J].
Janiak-Spens, F ;
Sparling, DP ;
West, AH .
JOURNAL OF BACTERIOLOGY, 2000, 182 (23) :6673-6678
[10]   Mutations in the SAM domain of STE50 differentially influence the MAPH-mediated pathways for mating, filamentous growth and osmotolerance in Saccharomyces cerevisiae [J].
Jansen, G ;
Bühring, F ;
Hollenberg, CP ;
Rad, MR .
MOLECULAR GENETICS AND GENOMICS, 2001, 265 (01) :102-117